Files
claude-code/mcp/llm-router/invoke.py
OpenCode Test f63172c4cf feat(external-llm): standardize tiers and optimize model selection
- Rename tiers: opus/sonnet/haiku → frontier/mid-tier/lightweight
- Align with industry benchmarks (MMLU, GPQA, Chatbot Arena)
- Add /external command for LLM mode control
- Fix invoke.py timeout passthrough (now 600s default)

Tier changes:
- Promote gemini-2.5-pro to frontier (benchmark-validated)
- Demote glm-4.7 to mid-tier then removed (unreliable)
- Promote gemini-2.5-flash to mid-tier

New models added:
- gpt-5-mini, gpt-5-nano (GPT family coverage)
- grok-code (Grok/X family)
- glm-4.5-air (lightweight GLM)

Removed (redundant/unreliable):
- o3 (not available)
- glm-4.7 (timeouts)
- gpt-4o, big-pickle, glm-4.5-flash (redundant)

Final: 11 models across 3 tiers, 4 model families

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 03:30:51 -08:00

128 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Invoke external LLM via configured provider.
Usage:
invoke.py --model copilot/gpt-5.2 -p "prompt"
invoke.py --task reasoning -p "prompt"
invoke.py --task code-generation -p "prompt" --json
Model selection priority:
1. Explicit --model flag
2. Task-based routing (--task flag)
3. Default from policy
"""
import argparse
import json
import sys
from pathlib import Path
STATE_DIR = Path.home() / ".claude/state"
ROUTER_DIR = Path(__file__).parent
def load_policy() -> dict:
"""Load model policy from state file."""
policy_file = STATE_DIR / "model-policy.json"
with open(policy_file) as f:
return json.load(f)
def resolve_model(args: argparse.Namespace, policy: dict) -> str:
"""Determine which model to use based on args and policy."""
if args.model:
return args.model
if args.task and args.task in policy.get("task_routing", {}):
return policy["task_routing"][args.task]
return policy.get("task_routing", {}).get("default", "copilot/sonnet-4.5")
def invoke(model: str, prompt: str, policy: dict, timeout: int = 600) -> str:
"""Invoke the appropriate provider for the given model."""
external_models = policy.get("external_models", {})
if model not in external_models:
raise ValueError(f"Unknown model: {model}. Available: {list(external_models.keys())}")
model_config = external_models[model]
cli = model_config["cli"]
cli_args = model_config.get("cli_args", [])
# Import and invoke appropriate provider
if cli == "opencode":
sys.path.insert(0, str(ROUTER_DIR))
from providers.opencode import invoke as opencode_invoke
return opencode_invoke(cli_args, prompt, timeout=timeout)
elif cli == "gemini":
sys.path.insert(0, str(ROUTER_DIR))
from providers.gemini import invoke as gemini_invoke
return gemini_invoke(cli_args, prompt, timeout=timeout)
else:
raise ValueError(f"Unknown CLI: {cli}")
def main():
parser = argparse.ArgumentParser(
description="Invoke external LLM via configured provider"
)
parser.add_argument(
"-p", "--prompt",
required=True,
help="Prompt text"
)
parser.add_argument(
"--model",
help="Explicit model (e.g., copilot/gpt-5.2)"
)
parser.add_argument(
"--task",
choices=["reasoning", "code-generation", "long-context", "general"],
help="Task type for automatic model routing"
)
parser.add_argument(
"--json",
action="store_true",
help="Output as JSON with model info"
)
parser.add_argument(
"--timeout",
type=int,
default=600,
help="Timeout in seconds (default: 600)"
)
args = parser.parse_args()
try:
policy = load_policy()
model = resolve_model(args, policy)
result = invoke(model, args.prompt, policy, timeout=args.timeout)
if args.json:
output = {
"model": model,
"response": result,
"success": True
}
print(json.dumps(output, indent=2))
else:
print(result)
except Exception as e:
if args.json:
output = {
"model": args.model or "unknown",
"error": str(e),
"success": False
}
print(json.dumps(output, indent=2))
sys.exit(1)
else:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()