# SPEC-1 – Classy Perplexity‑style News Aggregator (Raspberry Pi 5 K8s) ## Background You want a Perplexity‑style web app that aggregates news from a defined pool of reference websites and presents results in a classy, attractive, highly responsive UI. The target runtime is a Raspberry Pi 5 Kubernetes cluster, so the system must be lightweight, ARM64‑friendly, and resilient to node churn or SD‑card fragility. The product should feel like a modern AI assistant for news discovery: fast search, crisp summaries, clear source attributions, and mobile‑first ergonomics. Initial working assumptions (to be confirmed): * Content sources are a curated list of reputable outlets and blogs that permit aggregation with proper linking and snippet‑length quoting. * We will index headlines, metadata, and short excerpts; full‑text storage will be minimized or avoided unless licensed. * The app will support semantic search + conversational Q\&A over the indexed corpus, with citations to original articles. * Real‑time(ish) freshness target: new articles discoverable within 2–5 minutes of publication. * UI aims to echo Perplexity’s clean card layout, with source badges, inline citations, and a composer panel for queries. * Deployment must fit on 2–4 ARM64 nodes, using lightweight containers and a small replicated datastore. ## Requirements **Scope for MVP**: Start with **Reuters** as the single source. Use official **RSS/Atom feeds and daily sitemaps** when available; gracefully fall back to HTML scraping for sections without feeds, storing only metadata/snippets with links. Freshness target 2–5 minutes. UI mirrors Perplexity’s card+chat layout with inline citations. ### MoSCoW **Must‑have** * Aggregate from Reuters via RSS/Atom + sitemaps; fallback HTML scraper with robots.txt compliance toggle. * ARM64‑ready containers deployable on Raspberry Pi 5 K8s (k3s or MicroK8s). * Ingest pipeline with deduplication, canonical URL normalization, and rate‑limit/backoff. * Index headlines, authors, timestamps, topics, short excerpt (<= 320 chars), and source URL. * Full‑text search over stored fields; semantic search embeddings over titles+snippets. * Summarization and on‑page Q\&A with **clear citations** to source URLs. * Classy, responsive UI with Perplexity‑style query composer, results cards, and source badges. * Observability: structured logs, basic metrics (ingest latency, queue depth, 95p response), and alerting. * Legal safety rails: configurable snippet length, per‑domain robots policy, and kill‑switch per source. **Should‑have** * Topic taxonomy and tags (World, Business, Tech, etc.). * Incremental sitemap polling (by date) + change‑list RSS polling with jitter to avoid burst load. * Reader mode extraction (readability‑style) used **only for summarization** in memory, not stored. * Caching layer (HTTP + summary cache) to keep Raspberry Pi costs low. * Multi‑node HA for index and queue; rolling updates. **Could‑have** * User accounts for saved searches and daily digests. * Multi‑source expansion via declarative YAML for new sites. * Related‑story clustering and timeline views. * Basic mobile PWA installability and offline read‑later for snippets. **Won’t‑have (MVP)** * Paywalled content bypassing or full‑text storage of copyrighted articles. * Personalized recommendations or email digests. * Editorial curation tooling beyond tags and pinning. ## Method ### High‑level architecture ```plantuml @startuml skinparam componentStyle rectangle skinparam shadowing false skinparam ArrowColor #888 skinparam DefaultFontName Inter rectangle "k0s Cluster (ARM64 Raspberry Pi 5)" as K8S { node "Namespace: news" as NS { [Ingest Scheduler] (CronJobs) [Feed+Sitemap Poller] (FastAPI Worker) [HTML Scraper] (Worker, Trafilatura) [Normalizer/Dedupe] (Worker) [Embedder] (Worker -> OpenAI embeddings/Gemini flash) [Summarizer] (Worker -> OpenAI gpt-4o-mini/Gemini pro) database "PostgreSQL + pgvector" as PG [Redis] (Cache + Queue) [API Gateway] (FastAPI) [Web UI] (Next.js, Tailwind, shadcn) } } [Feed+Sitemap Poller] --> [HTML Scraper] [HTML Scraper] --> [Normalizer/Dedupe] [Normalizer/Dedupe] --> PG [Embedder] --> PG [Summarizer] --> PG [Ingest Scheduler] --> [Feed+Sitemap Poller] [Embedder] --> [OpenAI Embeddings API/Gemini API] [Summarizer] --> [OpenAI Chat Completions/Gemini API] [API Gateway] --> PG [API Gateway] --> Redis [Web UI] --> [API Gateway] @enduml ``` **Why these choices (MVP):** * **Source**: Start with **Reuters** using news sitemaps (with pagination parameters) and RSS; where feeds don’t exist, scrape respectfully with robots awareness. * **Storage**: **PostgreSQL + pgvector** keeps the stack compact (one DB for metadata, text search, and vectors). Postgres full‑text covers keyword search; pgvector powers semantic search. * **Workers**: Python **FastAPI** workers using **Trafilatura** for robust article extraction and metadata parsing. **Redis** as the lightweight queue/cache (Dramatiq or RQ). * **Summaries/Q\&A**: On‑demand summaries and answer synthesis via **gpt‑4o‑mini or Gemini pro** with **inline citations**. Embeddings via **text‑embedding‑3‑small or Gemini flash**. Both accessed through API keys/secrets in Kubernetes. * **UI**: **Next.js 14 App Router**, Tailwind + shadcn for a Perplexity‑style, low‑latency interface. * **k0s**: ARM64‑friendly. Use **nginx‑ingress** for HTTP routing, with optional **HAProxy Ingress** for TCP/advanced policies. ### Data model (PostgreSQL) ```sql -- Sources (static for MVP) CREATE TABLE sources ( id SERIAL PRIMARY KEY, name TEXT NOT NULL UNIQUE, -- e.g., 'Reuters' base_url TEXT NOT NULL, -- e.g., https://www.reuters.com rss_urls TEXT[] NOT NULL DEFAULT '{}', sitemap_urls TEXT[] NOT NULL DEFAULT '{}', robots_txt TEXT, enabled BOOLEAN NOT NULL DEFAULT true ); -- Raw fetch jobs (observability + retries) CREATE TABLE fetch_jobs ( id BIGSERIAL PRIMARY KEY, source_id INT REFERENCES sources(id), url TEXT NOT NULL, kind TEXT NOT NULL CHECK (kind IN ('rss','sitemap','article')), status TEXT NOT NULL CHECK (status IN ('queued','fetched','parsed','failed')), http_status INT, etag TEXT, last_modified TIMESTAMPTZ, attempts INT NOT NULL DEFAULT 0, error TEXT, created_at TIMESTAMPTZ NOT NULL DEFAULT now(), updated_at TIMESTAMPTZ NOT NULL DEFAULT now() ); CREATE INDEX ON fetch_jobs (status, created_at); -- Canonical articles (no copyrighted full text stored) CREATE TABLE articles ( id BIGSERIAL PRIMARY KEY, source_id INT REFERENCES sources(id) NOT NULL, canonical_url TEXT NOT NULL, url_hash BYTEA NOT NULL, -- SHA-256 of canonical_url title TEXT NOT NULL, author TEXT, category TEXT, -- World, Business, Tech, etc. published_at TIMESTAMPTZ, fetched_at TIMESTAMPTZ NOT NULL DEFAULT now(), snippet TEXT, -- <= 320 chars, from feed/lede summary TEXT, -- model-generated abstract image_url TEXT, language TEXT DEFAULT 'en', UNIQUE (source_id, url_hash) ); CREATE INDEX ON articles (published_at DESC); CREATE INDEX ON articles USING GIN (to_tsvector('english', coalesce(title,'') || ' ' || coalesce(snippet,''))); -- Embeddings for semantic search (title+snippet) CREATE EXTENSION IF NOT EXISTS vector; CREATE TABLE article_embeddings ( article_id BIGINT PRIMARY KEY REFERENCES articles(id) ON DELETE CASCADE, embedding vector(1536) -- dimension for text-embedding-3-small or Gemini flash ); CREATE INDEX ON article_embeddings USING ivfflat (embedding vector_cosine_ops); -- Tags and mapping (optional but handy) CREATE TABLE tags ( id SERIAL PRIMARY KEY, name TEXT UNIQUE ); CREATE TABLE article_tags ( article_id BIGINT REFERENCES articles(id) ON DELETE CASCADE, tag_id INT REFERENCES tags(id) ON DELETE CASCADE, PRIMARY KEY (article_id, tag_id) ); ``` ### Ingestion flow 1. **Discovery** * Poll **RSS/Atom** endpoints with ETag/Last‑Modified to minimize bandwidth. * Poll **news sitemaps** using incremental parameters (e.g., `from=` offsets when supported). Maintain per‑endpoint cursors. * For sections without feeds, enqueue **HTML pages** discovered from site index pages (rate‑limited) and respect `robots.txt` (configurable). 2. **Fetch & Extract** * HTTP client with retry + exponential backoff and per‑host concurrency caps (e.g., 2–4). Respect `Cache-Control` where present. * Use **Trafilatura** with `favor_precision=true` to extract main content for **in‑memory summarization only**; do not persist full text. * Generate a **canonical URL** (resolve redirects, strip tracking params) and compute `url_hash`. 3. **Normalize & Deduplicate** * If `(source_id, url_hash)` exists, skip insert; else create `articles` row with metadata and **snippet** (<=320 chars). * Classify category using rule‑based hints (URL path, RSS category) with a fallback lightweight classifier. 4. **Summaries & Embeddings** * Create a short **summary** (60–90 words, neutral tone) with inline citation marker `[1]` → canonical URL. * Compute **embedding** on `(title + " " + snippet)` and upsert into `article_embeddings`. 5. **Indexing & Cache** * Postgres GIN index supports keyword search; pgvector handles ANN semantic search. * Cache hot queries and summaries in Redis for 5–15 minutes. ### API design (FastAPI) * `GET /v1/search?q=&mode=hybrid&page=` — Hybrid search (keyword + vector rerank), returns cards with title, snippet, badges, and citations. * `GET /v1/articles/{id}` — Metadata + summary. * `POST /v1/ask` — Conversational answer over top‑k retrieved articles, always with citations. * `POST /v1/feedback` — Thumbs up/down and optional comment. ### UI flows (Next.js 14) * **Home**: Center composer, query suggestions, trending topics. * **Results**: Perplexity‑style answer at top with source chips; below, cards for each cited article; sticky composer for follow‑ups. * **Interactions**: Cmd/Ctrl‑K global search, `?` keyboard help, skeleton loaders, optimistic UI. ### Kubernetes (k0s) deployment sketch * **Namespaces**: `news`, `news-observe`. * **Ingress**: `nginx-ingress` for HTTPS; optional parallel **HAProxy Ingress** for TCP/advanced use. Certs via cert‑manager + DNS‑01 or HTTP‑01. * **Deployments** (ARM64 images): * `api` (FastAPI, Uvicorn Gunicorn): 2 replicas, HPA on CPU 60% & p95 latency SLI. * `web` (Next.js): 2 replicas, static export (optional) behind Node adapter. * `worker` (ingest/summarize/embed): 2–4 replicas, separate queues for `poll`, `scrape`, `summ`, `embed`. * `postgres` (Bitnami ARM64) with persistent volume; enable `pgvector` extension. * `redis` (Bitnami ARM64) for cache/queue. * **RBAC/Secrets**: Kubernetes Secrets for API keys; service accounts per deployment. * **Resources (starting)**: api 200m/512Mi; web 100m/256Mi; worker 300m/1Gi; redis 50m/256Mi; postgres 250m/2Gi. * **Autoscaling**: HPA + VPA recommendations; cluster metrics via kube‑metrics‑server. ### Ranking & answer synthesis * **Hybrid search**: BM25 (Postgres full‑text) for recall → take top 50; compute cosine similarity on vectors → rerank → top 8. * **Answer**: Prompt model with the top 6 snippets + titles and URLs; enforce **citation after each sentence** where evidence exists. Refuse to answer beyond source material. ### Rate limiting & ethics * Per‑source QPS caps (e.g., 0.5–1 rps) and adaptive backoff. * Honor robots.txt by default; switchable per your policy. Always link prominently to original. * Snippets limited; no storage of full article text. ## Implementation ### 0) Repo layout ``` news-agg/ apps/ api/ # FastAPI (Python 3.11) web/ # Next.js 14 UI workers/ # poll/scrape/summarize/embed (FastAPI tasks + RQ/Dramatiq) deploy/ base/ # K8s Kustomize base (namespaces, RBAC, NetworkPolicies) overlays/ pi-prod/ kustomization.yaml postgres.yaml redis.yaml api.yaml web.yaml workers.yaml cron-poller.yaml ingress-nginx.yaml ingress-haproxy.yaml (optional) secrets.example.yaml ops/ helm-values/ bitnami-postgresql.yaml bitnami-redis.yaml scripts/ build.sh # multi-arch docker buildx db_migrate.sql # tables + pgvector ``` ### 1) Container images (ARM64) * **Python base**: `python:3.11-slim` + `uv`/`pip-tools`; compile wheels at build time. * **Node**: `node:18-alpine` → `next build` then run with `node` or export static. * Use **`docker buildx`** to produce `linux/arm64` images. Example: ``` docker buildx build --platform linux/arm64 -t registry/pi/news-api:0.1 -f apps/api/Dockerfile --push . ``` **apps/api/Dockerfile** (snippet) ```Dockerfile FROM python:3.11-slim RUN apt-get update && apt-get install -y build-essential libpq-dev && rm -rf /var/lib/apt/lists/* WORKDIR /app COPY apps/api/pyproject.toml apps/api/uv.lock ./ RUN pip install -U pip && pip install uv RUN uv pip install --system -r requirements.txt || true COPY apps/api/ . CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"] ``` ### 2) k0s cluster prep (once) * Install **nginx‑ingress** and (optionally) **HAProxy Ingress** via manifests/Helm. * Install **cert-manager** for TLS if exposing publicly. * Add **metrics‑server** for HPA and **KEDA** (optional) for queue-based scaling. ### 3) Datastores **PostgreSQL (Bitnami, pgvector)** ```yaml # deploy/overlays/pi-prod/postgres.yaml apiVersion: v1 kind: PersistentVolumeClaim metadata: { name: pgdata, namespace: news } spec: accessModes: ["ReadWriteOnce"] resources: { requests: { storage: 20Gi } } --- apiVersion: v1 kind: ConfigMap metadata: { name: pg-init, namespace: news } data: 00-init.sql: | CREATE EXTENSION IF NOT EXISTS vector; -- migrations applied by apps on startup too --- apiVersion: helm.cattle.io/v1 kind: HelmChart metadata: { name: pg, namespace: kube-system } spec: chart: oci://registry-1.docker.io/bitnamicharts/postgresql targetNamespace: news version: 15.x.x valuesContent: | image: repository: bitnami/postgresql tag: 15-debian-12 primary: extraVolumes: - name: pg-init configMap: { name: pg-init } extraVolumeMounts: - name: pg-init mountPath: /docker-entrypoint-initdb.d persistence: existingClaim: pgdata auth: username: news password: ${PG_PASSWORD} database: news ``` **Redis (Bitnami)** ```yaml # deploy/overlays/pi-prod/redis.yaml apiVersion: helm.cattle.io/v1 kind: HelmChart metadata: { name: redis, namespace: kube-system } spec: chart: oci://registry-1.docker.io/bitnamicharts/redis targetNamespace: news version: 18.x.x valuesContent: | architecture: standalone auth: enabled: false ``` ### 4) Secrets & Config ```yaml # deploy/overlays/pi-prod/secrets.example.yaml (copy to secrets.yaml and fill) apiVersion: v1 kind: Secret metadata: { name: app-secrets, namespace: news } type: Opaque data: OPENAI_API_KEY: GEMINI_API_KEY: APP_SIGNING_KEY: --- apiVersion: v1 kind: ConfigMap metadata: { name: app-config, namespace: news } data: SNIPPET_MAX: "320" SOURCES: | - name: Reuters base_url: https://www.reuters.com rss: - https://www.reuters.com/rss/worldNews sitemaps: - https://www.reuters.com/sitemap_news.xml robots_policy: honor RANKING: "hybrid" ``` ### 5) Workers (poll, scrape, summarize, embed) ```yaml # deploy/overlays/pi-prod/workers.yaml apiVersion: apps/v1 kind: Deployment metadata: { name: workers, namespace: news } spec: replicas: 3 selector: { matchLabels: { app: workers } } template: metadata: { labels: { app: workers } } spec: containers: - name: workers image: registry/pi/news-workers:0.1 envFrom: - secretRef: { name: app-secrets } - configMapRef: { name: app-config } env: - { name: REDIS_URL, value: redis://redis-master.news.svc.cluster.local:6379/0 } - { name: DATABASE_URL, value: postgresql://news:$(PG_PASSWORD)@pg-postgresql.news.svc.cluster.local:5432/news } resources: requests: { cpu: "300m", memory: "1Gi" } limits: { cpu: "900m", memory: "2Gi" } livenessProbe: { httpGet: { path: /healthz, port: 8080 }, initialDelaySeconds: 15 } readinessProbe:{ httpGet: { path: /readyz, port: 8080 }, initialDelaySeconds: 5 } ``` **Cron: feed/sitemap polling** ```yaml apiVersion: batch/v1 kind: CronJob metadata: { name: poller, namespace: news } spec: schedule: "*/2 * * * *" # every 2 minutes jobTemplate: spec: template: spec: restartPolicy: OnFailure containers: - name: poll image: registry/pi/news-workers:0.1 args: ["poll"] envFrom: - secretRef: { name: app-secrets } - configMapRef: { name: app-config } ``` ### 6) API service (FastAPI) ```yaml # deploy/overlays/pi-prod/api.yaml apiVersion: apps/v1 kind: Deployment metadata: { name: api, namespace: news } spec: replicas: 2 selector: { matchLabels: { app: api } } template: metadata: { labels: { app: api } } spec: containers: - name: api image: registry/pi/news-api:0.1 ports: [{ containerPort: 8080 }] envFrom: - secretRef: { name: app-secrets } - configMapRef: { name: app-config } env: - { name: REDIS_URL, value: redis://redis-master.news.svc.cluster.local:6379/0 } - { name: DATABASE_URL, value: postgresql://news:$(PG_PASSWORD)@pg-postgresql.news.svc.cluster.local:5432/news } resources: requests: { cpu: "200m", memory: "512Mi" } limits: { cpu: "600m", memory: "1Gi" } --- apiVersion: v1 kind: Service metadata: { name: api, namespace: news } spec: selector: { app: api } ports: - name: http port: 80 targetPort: 8080 ``` **FastAPI search (sketch)** ```python # apps/api/search.py from pgvector.psycopg import register_vector import psycopg, numpy as np EMBED_DIM = 1536 def hybrid_search(conn, q, k=8): with conn.cursor() as cur: # 1) Embedding v = embed(q) # call OpenAI embeddings or Gemini flash # 2) Keyword recall cur.execute(""" SELECT id, title, snippet, canonical_url, ts_rank(to_tsvector('english', coalesce(title,'')||' '||coalesce(snippet,'')), plainto_tsquery(%s)) AS rank FROM articles WHERE to_tsvector('english', coalesce(title,'')||' '||coalesce(snippet,'')) @@ plainto_tsquery(%s) ORDER BY rank DESC LIMIT 50 """, (q, q)) rows = cur.fetchall() ids = [r[0] for r in rows] or [-1] # 3) Vector rerank cur.execute(""" SELECT a.id, a.title, a.snippet, a.canonical_url, 1 - (e.embedding <=> %s::vector) AS sim FROM articles a JOIN article_embeddings e ON e.article_id = a.id WHERE a.id = ANY(%s) ORDER BY sim DESC LIMIT %s """, (np.array(v), ids, k)) return cur.fetchall() ``` ### 7) Web UI (Next.js 14) * App Router, Tailwind, shadcn/ui. Server actions call API. * Components: `Composer`, `AnswerBox` (with sentence-level citations), `ResultCard`, `SourceChip`. * Add **PWA** manifest + basic offline cache for shell. ### 8) Ingress (nginx primary, HAProxy optional) ```yaml # deploy/overlays/pi-prod/ingress-nginx.yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: news namespace: news annotations: kubernetes.io/ingress.class: nginx nginx.ingress.kubernetes.io/proxy-body-size: "1m" spec: tls: - hosts: [news.local] secretName: news-tls rules: - host: news.local http: paths: - path: / pathType: Prefix backend: { service: { name: web, port: { number: 80 } } } - path: /v1 pathType: Prefix backend: { service: { name: api, port: { number: 80 } } } ``` ### 9) Observability * **Logging**: JSON logs via `structlog` (API/workers), `stdout` aggregated by k0s. * **Metrics**: Prometheus scraping (use `prometheus-fastapi-instrumentator`), Grafana dashboards. * **Tracing**: OpenTelemetry SDK exporting to Tempo/OTLP (optional). * SLOs: p95 search < 600ms (warm); ingest freshness p95 < 5 min. ### 10) CI/CD (GitHub Actions) * Build multi-arch images with `setup-buildx-action`, push to your registry. * Deploy via `kubectl` or ArgoCD (optional). Gate with manual approval. ### 11) Prompts & safety rails * **Summary prompt**: 60–90 words, neutral tone, forbid speculation, 1–2 citations with URLs. * **Answer prompt**: Use only retrieved snippets; every sentence claims must cite `[n]`. If insufficient evidence, say so. * **Guardrails**: Max 6 articles per answer; truncate inputs to token budget. ## Gemini LLM Integration As an alternative to OpenAI models, this project supports Google's Gemini LLM for both embeddings and conversational tasks: ### Available Models - **gemini-2.5-flash**: Lightweight model optimized for fast responses and high throughput - **gemini-2.5-pro**: Advanced "thinking" model with enhanced reasoning capabilities ### Command Usage Use the following commands to interact with Gemini models: ```bash # For fast, lightweight responses (embeddings, quick summaries) gemini --model gemini-2.5-flash -p "" # For complex reasoning and detailed analysis (conversational answers) gemini --model gemini-2.5-pro -p "" ``` ### Integration Notes - Gemini models can be used as drop-in replacements for OpenAI equivalents - Flash model recommended for embeddings worker (text-embedding-3-small equivalent) - Pro model recommended for summarizer worker (gpt-4o-mini equivalent) - Configure via GEMINI_API_KEY in Kubernetes secrets alongside OPENAI_API_KEY - Network policies should allow egress to generativelanguage.googleapis.com ### 12) Performance knobs (Raspberry Pi friendly) * Enable HTTP caching (ETag/If‑Modified‑Since). * Redis cache TTL 10m for hot queries. * Per‑host concurrency: 2 (scraper); global QPS: 0.5–1 for Reuters. * Use gzip/deflate when fetching; strip images when scraping. ### 13) Data retention * Keep `articles` 30 days rolling (configurable). Older rows archived to `articles_archive` without embeddings. ### 14) Security * NetworkPolicies: only API/worker → DB/Redis; web → API; deny egress by default except OpenAI and Gemini domains (api.openai.com, generativelanguage.googleapis.com). * Secrets from Kubernetes; rotate quarterly. Read‑only service accounts for web. Include both OPENAI_API_KEY and GEMINI_API_KEY in secret management. * TLS everywhere; CSP headers on web. ## Milestones **MVP timeline: 2 weeks (LAN only, no TLS)** ### Week 1 — Foundations & ingest * **Day 1–2**: Cluster prep (k0s), namespaces, nginx Ingress (HTTP only), metrics‑server. Registry access + buildx pipeline. * **Day 3**: Postgres (pgvector) + Redis live; migrations applied. * **Day 4**: Workers scaffolded (poll, scrape) with Reuters RSS + sitemap pollers; ETag/Last‑Modified implemented; robots policy set to *honor*. * **Day 5**: Normalizer/dedupe; article schema writes; minimal admin page to view ingest logs. **Exit criteria**: Reuters articles flowing into DB with title/snippet/category/published\_at; p95 freshness under 10 min. ### Week 2 — Search, summaries, UI polish * **Day 6**: Embeddings worker + index (pgvector ivfflat). Hybrid search in API. * **Day 7**: Summarizer worker; store 60–90 word summaries; cache. * **Day 8**: Next.js UI (composer, answer box, cards, source chips). Basic keyboard nav. * **Day 9**: Observability: Prometheus scrape + Grafana dashboard; SLOs wired. * **Day 10**: Hardening (quotas, retries), data retention job; smoke tests; cut **MVP v0.1.0**. **Exit criteria**: Query returns an answer with citations in < 800ms warm path; summaries stable; LAN users can search and read cited sources. ## Gathering Results ### KPIs (Primary) * **Freshness (p95)**: time from article publication → available in search. Target: ≤ 5 minutes; stretch ≤ 2 minutes. * **Answer Accuracy**: % of answer sentences that have at least one valid citation to the retrieved set. Target: ≥ 95%. ### KPIs (Secondary) * **Coverage**: % of Reuters articles discovered vs. listed in sitemaps over last 24h. Target: ≥ 98%. * **Latency (p95)**: query → first contentful paint (UI) and API response time. Targets: API ≤ 600ms warm; UI FCP ≤ 1.5s on LAN. * **Stability**: worker error rate < 1%; scraper retry rate < 10%. ### Instrumentation * **Prometheus metrics** * `ingest_freshness_seconds{source=…}` (histogram) * `ingest_discovered_total{kind= rss|sitemap|scrape}` * `scrape_http_status_total{code=…}` * `search_latency_seconds` (histogram) * `answer_citation_coverage_ratio` (gauge) * `worker_queue_depth{queue=…}` * **Structured logs** (JSON): include `trace_id`, `job_id`, and normalized URL. * **Dashboards (Grafana)**: Freshness, Search Latency, Coverage vs Sitemap, Error budget burn. ### Accuracy evaluation * **Automatic**: * Parse answer into sentences; verify each sentence has at least one citation. * Check that citation URLs match the top‑k retrieved set and that snippets contain supporting tokens (simple ROUGE‑like overlap). * Flag low‑evidence sentences for review. * **Human review** (1–2×/week): * 50 sampled answers; label: correct / partially supported / unsupported / off‑topic. * Compute **hallucination rate** (unsupported sentences ÷ total) and track trend. ### Feedback loop * UI **thumbs up/down** with optional comment saved to `feedback` table: ```sql CREATE TABLE feedback ( id BIGSERIAL PRIMARY KEY, query TEXT NOT NULL, answer_id TEXT, verdict TEXT CHECK (verdict IN ('up','down')), comment TEXT, created_at TIMESTAMPTZ NOT NULL DEFAULT now() ); ``` * Downvotes auto‑create a JIRA/GitHub issue if `answer_citation_coverage_ratio < 0.9`. ### Experimentation * **Prompt variants** A/B via header flag in API (e.g., `x-prompt=v2`). * **Ranking tweaks**: switch BM25 weight vs vector weight; record NDCG\@10 on labeled queries. ### Post‑mortems & safety * Blameless post‑mortem for any incident where hallucination rate > 10% in a day or freshness p95 > 10 min for >1h. * Daily data retention job verified; no full‑text persists beyond in‑memory summary context.