Add comprehensive tests for error handling, input validation, search filtering, and UI components
Some checks failed
Build and Push Docker Image / build-and-push (push) Has been cancelled

- Implemented unit tests for the ErrorHandler class, covering error handling, frequency tracking, and performance warnings.
- Created integration tests for input validation, error handling, auto-save functionality, and search/filter systems.
- Developed unit tests for the DataFilter, QuickFilters, and SearchHistory classes to ensure filtering logic works as expected.
- Added tests for the SearchFilterWidget UI component, verifying initialization, filter functionality, and responsiveness.
- Included edge case tests for error handling without UI manager and handling of None values.
This commit is contained in:
William Valentin
2025-08-06 10:58:55 -07:00
parent 422617eb6c
commit 40376a9cfc
6 changed files with 1454 additions and 1 deletions

View File

@@ -11,16 +11,21 @@ from pathlib import Path
from unittest.mock import Mock, patch, MagicMock
import pytest
import pandas as pd
import time
# Add src to path
sys.path.insert(0, str(Path(__file__).parent.parent / "src"))
from data_manager import DataManager
from export_manager import ExportManager
from init import logger
from input_validator import InputValidator
from error_handler import ErrorHandler
from auto_save import AutoSaveManager
from search_filter import DataFilter, QuickFilters, SearchHistory
from medicine_manager import MedicineManager
from pathology_manager import PathologyManager
from theme_manager import ThemeManager
from init import logger
class TestIntegrationSuite:
@@ -339,3 +344,341 @@ class TestSystemHealthChecks:
# These should not raise exceptions
assert True, "Logging system working correctly"
class TestNewFeaturesIntegration:
"""Integration tests for new features added to TheChart."""
@pytest.fixture(autouse=True)
def setup_new_features_test(self):
"""Set up test environment for new features."""
self.temp_dir = tempfile.mkdtemp()
self.test_csv = os.path.join(self.temp_dir, "test_data.csv")
self.backup_dir = os.path.join(self.temp_dir, "backups")
# Create sample data
sample_data = pd.DataFrame({
'date': ['01/01/2024', '01/15/2024', '02/01/2024'],
'note': ['First entry', 'Second entry', 'Third entry'],
'medicine1': [1, 0, 1], # 1 = taken, 0 = not taken
'pathology1': [3, 7, 9]
})
sample_data.to_csv(self.test_csv, index=False)
# Initialize managers
self.medicine_manager = MedicineManager(logger=logger)
self.pathology_manager = PathologyManager(logger=logger)
yield
# Cleanup
import shutil
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir)
def test_input_validation_integration(self):
"""Test input validation system integration."""
print("Testing input validation integration...")
# Test comprehensive validation workflow
test_cases = [
# (field_type, value, expected_valid)
("date", "01/15/2024", True),
("date", "invalid-date", False),
("pathology_score", "5", True),
("pathology_score", "15", False),
("note", "Valid note", True),
("note", "A" * 1001, False), # Too long
("filename", "data.csv", True),
("filename", "A" * 150, False), # Too long filename
]
for field_type, value, expected_valid in test_cases:
if field_type == "date":
is_valid, _, _ = InputValidator.validate_date(value)
elif field_type == "pathology_score":
is_valid, _, _ = InputValidator.validate_pathology_score(value)
elif field_type == "note":
is_valid, _, _ = InputValidator.validate_note(value)
elif field_type == "filename":
is_valid, _, _ = InputValidator.validate_filename(value)
assert is_valid == expected_valid, \
f"Validation failed for {field_type}='{value}': expected {expected_valid}, got {is_valid}"
def test_error_handling_integration(self):
"""Test error handling system integration."""
print("Testing error handling integration...")
# Create a logger for testing
import logging
test_logger = logging.getLogger("test")
mock_ui_manager = MagicMock()
error_handler = ErrorHandler(logger=test_logger, ui_manager=mock_ui_manager)
# Test different error types
error_scenarios = [
(ValueError("Invalid input"), "Input validation", "Validation failed"),
(FileNotFoundError("File not found"), "File operation", "File operation failed"),
(RuntimeError("Unknown error"), "Runtime operation", "Unexpected error")
]
for error, context, user_message in error_scenarios:
# Test basic error handling
error_handler.handle_error(error, context, user_message, show_dialog=False)
# Verify the UI manager was called to update status
assert mock_ui_manager.update_status.called, f"Status update not called for {context}"
# Test validation error handling
error_handler.handle_validation_error("test_field", "Invalid value", "Use a valid value")
assert mock_ui_manager.update_status.called, "Validation error handling failed"
# Test file error handling
error_handler.handle_file_error("read", "/test/file.csv", FileNotFoundError("File missing"))
assert mock_ui_manager.update_status.called, "File error handling failed"
def test_auto_save_integration(self):
"""Test auto-save system integration."""
print("Testing auto-save integration...")
mock_save_callback = MagicMock()
auto_save = AutoSaveManager(
save_callback=mock_save_callback,
interval_minutes=0.01, # Very short for testing
)
try:
# Test enabling auto-save
auto_save.enable_auto_save()
assert auto_save._auto_save_enabled, "Auto-save should be enabled"
# Test data modification tracking
auto_save.mark_data_modified()
assert auto_save._data_modified, "Data should be marked as modified"
# Test force save
auto_save.force_save()
assert mock_save_callback.called, "Save callback should be called on force save"
# Test save with modifications
auto_save.mark_data_modified()
auto_save.force_save() # Call force_save again
assert mock_save_callback.call_count >= 2, "Save should be called when data is modified"
# Test disabling auto-save
auto_save.disable_auto_save()
assert not auto_save._auto_save_enabled, "Auto-save should be disabled"
finally:
auto_save.disable_auto_save()
print("Auto-save integration test passed!")
def test_search_filter_integration(self):
"""Test search and filter system integration."""
print("Testing search and filter integration...")
# Load test data
test_data = pd.read_csv(self.test_csv)
data_filter = DataFilter()
# Test text search
data_filter.set_search_term("Second")
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 1, "Text search failed"
assert "Second entry" in filtered_data['note'].values
# Test date range filter
data_filter.clear_all_filters()
data_filter.set_date_range_filter("01/01/2024", "01/31/2024")
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 2, "Date range filter failed"
# Test medicine filter
data_filter.clear_all_filters()
data_filter.set_medicine_filter("medicine1", True) # Taken
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 2, "Medicine filter (taken) failed"
data_filter.set_medicine_filter("medicine1", False) # Not taken
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 1, "Medicine filter (not taken) failed"
# Test pathology range filter
data_filter.clear_all_filters()
data_filter.set_pathology_range_filter("pathology1", 5, 10)
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 2, "Pathology range filter failed"
# Test combined filters
data_filter.clear_all_filters()
data_filter.set_search_term("entry")
data_filter.set_pathology_range_filter("pathology1", 7, 10)
filtered_data = data_filter.apply_filters(test_data)
assert len(filtered_data) == 2, "Combined filters failed"
# Test quick filters
QuickFilters.last_week(data_filter)
assert "date_range" in data_filter.active_filters, "Quick filter (last week) failed"
QuickFilters.last_month(data_filter)
assert "date_range" in data_filter.active_filters, "Quick filter (last month) failed"
pathology_keys = self.pathology_manager.get_pathology_keys()
if pathology_keys:
QuickFilters.high_symptoms(data_filter, pathology_keys)
assert "pathologies" in data_filter.active_filters, "Quick filter (high symptoms) failed"
def test_search_history_integration(self):
"""Test search history functionality."""
print("Testing search history integration...")
search_history = SearchHistory()
# Test adding searches
test_searches = ["symptom search", "medication query", "date range"]
for search in test_searches:
search_history.add_search(search)
history = search_history.get_history()
assert len(history) >= len(test_searches), "Search history not recording properly"
# Test search suggestions
suggestions = search_history.get_suggestions("med")
medication_suggestions = [s for s in suggestions if "med" in s.lower()]
assert len(medication_suggestions) >= 0, "Search suggestions not working"
def test_complete_workflow_integration(self):
"""Test complete workflow with all new features."""
print("Testing complete workflow integration...")
# Initialize all systems
mock_save_callback = MagicMock()
auto_save = AutoSaveManager(
save_callback=mock_save_callback,
interval_minutes=5
)
data_filter = DataFilter()
try:
# Step 1: Enable auto-save
auto_save.enable_auto_save()
# Step 2: Validate new data entry
new_date = "01/15/2024"
new_note = "Workflow test entry"
date_valid, date_msg, _ = InputValidator.validate_date(new_date)
note_valid, note_msg, _ = InputValidator.validate_note(new_note)
assert date_valid, f"Date validation failed: {date_msg}"
assert note_valid, f"Note validation failed: {note_msg}"
score_valid, score_msg, _ = InputValidator.validate_pathology_score("6")
assert score_valid, f"Score validation failed: {score_msg}"
# Step 3: Add validated data to file
original_data = pd.read_csv(self.test_csv)
new_row = pd.DataFrame({
'date': [new_date],
'note': [new_note],
'medicine1': [0],
'pathology1': [6]
})
updated_data = pd.concat([original_data, new_row], ignore_index=True)
updated_data.to_csv(self.test_csv, index=False)
# Step 4: Mark data as modified for auto-save
auto_save.mark_data_modified()
auto_save.force_save()
assert mock_save_callback.called, "Auto-save should trigger save callback"
# Step 5: Test filtering on updated data
data_filter.set_search_term("Workflow")
filtered_data = data_filter.apply_filters(updated_data)
assert len(filtered_data) == 1, "Search filter failed on updated data"
assert any("Workflow" in note for note in filtered_data['note'].values)
# Step 6: Test date range filter
data_filter.clear_all_filters()
data_filter.set_date_range_filter("01/14/2024", "01/16/2024") # Include both entries on 01/15
filtered_data = data_filter.apply_filters(updated_data)
assert len(filtered_data) == 2, "Date filter failed on new entry"
# Step 7: Test error handling with invalid operation
try:
# Simulate file operation error
raise FileNotFoundError("Simulated file error")
except FileNotFoundError as e:
import logging
test_logger = logging.getLogger("test")
mock_ui_manager = MagicMock()
error_handler = ErrorHandler(logger=test_logger, ui_manager=mock_ui_manager)
error_handler.handle_error(e, "Test error handling", "Simulated error", show_dialog=False)
# Verify error was handled
assert mock_ui_manager.update_status.called, "Error handling should update status"
# Step 8: Verify auto-save functionality
assert auto_save._auto_save_enabled, "Auto-save should be enabled"
auto_save.disable_auto_save()
assert not auto_save._auto_save_enabled, "Auto-save should be disabled"
print("Complete workflow integration test passed!")
finally:
auto_save.disable_auto_save()
def test_performance_under_load(self):
"""Test system performance with larger datasets."""
print("Testing performance under load...")
# Create larger dataset
large_data = []
for i in range(100):
large_data.append({
'date': f"01/{(i % 28) + 1:02d}/2024",
'note': f"Entry number {i}",
'medicine1': 1 if i % 2 == 0 else 0,
'pathology1': (i % 10) + 1
})
large_df = pd.DataFrame(large_data)
large_csv = os.path.join(self.temp_dir, "large_data.csv")
large_df.to_csv(large_csv, index=False)
# Test filtering performance
data_filter = DataFilter()
start_time = time.time()
data_filter.set_search_term("Entry")
filtered_data = data_filter.apply_filters(large_df)
search_time = time.time() - start_time
assert len(filtered_data) == 100, "Search filter failed on large dataset"
assert search_time < 1.0, f"Search took too long: {search_time:.2f}s"
# Test auto-save performance
mock_save_callback = MagicMock()
auto_save = AutoSaveManager(
save_callback=mock_save_callback,
interval_minutes=5
)
try:
start_time = time.time()
auto_save.enable_auto_save()
auto_save.mark_data_modified()
auto_save.force_save()
save_time = time.time() - start_time
assert mock_save_callback.called, "Save callback should be called"
assert save_time < 2.0, f"Save took too long: {save_time:.2f}s"
finally:
auto_save.disable_auto_save()
print(f"Performance test completed: Search={search_time:.3f}s, Save={save_time:.3f}s")