# Test Updates for Enhanced Legend Feature ## Overview Updated test suite to cover the new enhanced legend functionality that displays individual medicines with average dosages and tracks medicines without dose data. ## New Test Methods Added ### 1. `test_enhanced_legend_functionality` **Purpose**: Tests that the enhanced legend displays correctly with medicine dose data. **What it tests**: - Legend is called with enhanced formatting parameters (ncol=2, fontsize='small', etc.) - Medicine toggles are properly handled - Legend configuration parameters are correctly applied **Key assertions**: - `mock_ax.legend.assert_called()` - Verifies `ncol=2`, `fontsize='small'`, `frameon=True` parameters ### 2. `test_legend_with_medicines_without_data` **Purpose**: Tests that medicines without dose data are properly tracked and displayed in legend info. **What it tests**: - Medicines with dose data vs. medicines without dose data - Additional legend entries for "Tracked (no doses)" information - Proper handling of mixed data scenarios **Key assertions**: - Legend has more labels than original when medicines without data are present - `mock_ax.legend.assert_called()` ### 3. `test_average_dose_calculation_in_legend` **Purpose**: Tests that average doses are correctly calculated and used in legend labels. **What it tests**: - Dose calculation accuracy for varying dose amounts - Average calculation logic for medicines with multiple daily entries - Proper dose processing and bar plotting **Key assertions**: - Direct dose calculation verification: `assert bup_avg == 100.0` - Bar plotting verification: `mock_ax.bar.assert_called()` ### 4. `test_legend_positioning_and_styling` **Purpose**: Tests that all legend styling parameters are correctly applied. **What it tests**: - Complete set of legend parameters (loc, bbox_to_anchor, ncol, fontsize, frameon, fancybox, shadow, framealpha) - Parameter value accuracy - Consistent application of styling **Key assertions**: ```python expected_params = { 'loc': 'upper left', 'bbox_to_anchor': (0, 1), 'ncol': 2, 'fontsize': 'small', 'frameon': True, 'fancybox': True, 'shadow': True, 'framealpha': 0.9 } ``` ### 5. `test_medicine_tracking_lists` **Purpose**: Tests that medicines are correctly categorized into medicines_with_data and medicines_without_data lists. **What it tests**: - Proper categorization of medicines based on dose data availability - Toggle state handling for different medicine states - Mixed scenarios with some medicines having data and others not **Key assertions**: - `mock_ax.bar.assert_called()` for medicines with data - `mock_ax.legend.assert_called()` for legend creation ### 6. `test_legend_dummy_handle_creation` **Purpose**: Tests that dummy handles are created for medicines without dose data in legend. **What it tests**: - Rectangle dummy handle creation for text-only legend entries - Proper import and usage of matplotlib.patches.Rectangle - Integration of dummy handles with existing legend system **Key assertions**: - `mock_rectangle.assert_called()` when medicines without data are present ### 7. `test_empty_dataframe_legend_handling` **Purpose**: Tests that legend is handled correctly with empty DataFrame scenarios. **What it tests**: - No legend creation when no data is present - Proper graph clearing and canvas redrawing - Edge case handling **Key assertions**: - `mock_ax.legend.assert_not_called()` for empty data - `mock_ax.clear.assert_called()` and `mock_canvas.draw.assert_called()` ## Test Data Enhancements ### Enhanced Sample DataFrames Tests now use more comprehensive DataFrames that include: - **Realistic dose data**: Multiple dose entries with varying amounts - **Mixed scenarios**: Some medicines with data, others without - **Average calculation data**: Varying doses across multiple days for accurate average testing - **Edge cases**: Empty dose strings, missing data scenarios ### Example Test Data Structure: ```python df_with_varying_doses = pd.DataFrame({ 'bupropion_doses': ['100mg', '200mg', '150mg'], # Avg: 150mg 'propranolol_doses': ['10mg', '20mg', ''], # Avg: 15mg 'hydroxyzine_doses': ['', '', ''], # No data }) ``` ## Mock Enhancements ### Legend-Specific Mocks: - **`mock_ax.get_legend_handles_labels`**: Returns mock handles and labels - **`matplotlib.patches.Rectangle`**: Mocked for dummy handle creation - **Enhanced legend parameter verification**: Detailed parameter checking ### Integration Testing: - Tests work with existing matplotlib mocking structure - Compatible with existing GraphManager test patterns - Maintains isolation between test methods ## Coverage Areas ### Legend Functionality: ✅ **Enhanced formatting**: Multi-column, styling, positioning ✅ **Medicine tracking**: With/without data categorization ✅ **Average calculations**: Accurate dose averaging in labels ✅ **Dummy handles**: Text-only legend entries ✅ **Parameter validation**: All styling parameters verified ### Edge Cases: ✅ **Empty DataFrames**: No legend creation ✅ **Mixed data scenarios**: Some medicines with/without data ✅ **Toggle combinations**: Various medicine toggle states ✅ **Import handling**: Matplotlib patches import testing ### Integration: ✅ **Existing functionality**: Compatible with previous tests ✅ **Mock consistency**: Uses established mocking patterns ✅ **Error handling**: Graceful handling of edge cases ## Running the Tests ```bash # Run all graph manager tests .venv/bin/python -m pytest tests/test_graph_manager.py -v # Run only legend-related tests .venv/bin/python -m pytest tests/test_graph_manager.py -k "legend" -v # Run with coverage .venv/bin/python -m pytest tests/test_graph_manager.py --cov=src.graph_manager --cov-report=html ``` ## Benefits ### Test Quality: - **Comprehensive coverage** of new legend functionality - **Edge case testing** for robust error handling - **Integration testing** with existing graph functionality ### Maintenance: - **Clear test names** indicating specific functionality - **Isolated test methods** for easy debugging - **Consistent patterns** following existing test structure The updated tests ensure that the enhanced legend functionality is thoroughly validated while maintaining compatibility with existing GraphManager features.