Files
thechart/src/pathology_manager.py
William Valentin c755f0affc Add comprehensive tests for dose tracking functionality
- Implemented `test_dose_parsing_simple.py` to validate the dose parsing workflow.
- Created `test_dose_save.py` to verify the saving functionality of dose tracking.
- Added `test_dose_save_simple.py` for programmatic testing of dose saving without UI interaction.
- Developed `test_final_workflow.py` to test the complete dose tracking workflow, ensuring doses are preserved during edits.
- Enhanced `conftest.py` with a mock pathology manager for testing.
- Updated `test_data_manager.py` to include pathology manager in DataManager tests and ensure compatibility with new features.
2025-07-31 09:50:45 -07:00

200 lines
7.1 KiB
Python

"""
Pathology configuration manager for the MedTracker application.
Handles dynamic loading and saving of pathology/symptom configurations.
"""
import json
import logging
import os
from dataclasses import asdict, dataclass
from typing import Any
@dataclass
class Pathology:
"""Data class representing a pathology/symptom."""
key: str # Internal key (e.g., "depression")
display_name: str # Display name (e.g., "Depression")
scale_info: str # Scale information (e.g., "0:good, 10:bad")
color: str # Color for graph display
default_enabled: bool = True # Whether to show in graph by default
scale_min: int = 0 # Minimum scale value
scale_max: int = 10 # Maximum scale value
scale_orientation: str = "normal" # "normal" (0=good) or "inverted" (0=bad)
class PathologyManager:
"""Manages pathology configurations and provides access to pathology data."""
def __init__(
self, config_file: str = "pathologies.json", logger: logging.Logger = None
):
self.config_file = config_file
self.logger = logger or logging.getLogger(__name__)
self.pathologies: dict[str, Pathology] = {}
self._load_pathologies()
def _get_default_pathologies(self) -> list[Pathology]:
"""Get the default pathology configuration."""
return [
Pathology(
key="depression",
display_name="Depression",
scale_info="0:good, 10:bad",
color="#FF6B6B",
default_enabled=True,
scale_orientation="normal",
),
Pathology(
key="anxiety",
display_name="Anxiety",
scale_info="0:good, 10:bad",
color="#FFA726",
default_enabled=True,
scale_orientation="normal",
),
Pathology(
key="sleep",
display_name="Sleep Quality",
scale_info="0:bad, 10:good",
color="#66BB6A",
default_enabled=True,
scale_orientation="inverted",
),
Pathology(
key="appetite",
display_name="Appetite",
scale_info="0:bad, 10:good",
color="#42A5F5",
default_enabled=True,
scale_orientation="inverted",
),
]
def _load_pathologies(self) -> None:
"""Load pathologies from configuration file."""
if os.path.exists(self.config_file):
try:
with open(self.config_file) as f:
data = json.load(f)
self.pathologies = {}
for pathology_data in data.get("pathologies", []):
pathology = Pathology(**pathology_data)
self.pathologies[pathology.key] = pathology
self.logger.info(
f"Loaded {len(self.pathologies)} pathologies from "
f"{self.config_file}"
)
except Exception as e:
self.logger.error(f"Error loading pathologies config: {e}")
self._create_default_config()
else:
self._create_default_config()
def _create_default_config(self) -> None:
"""Create default pathology configuration."""
default_pathologies = self._get_default_pathologies()
self.pathologies = {path.key: path for path in default_pathologies}
self.save_pathologies()
self.logger.info("Created default pathology configuration")
def save_pathologies(self) -> bool:
"""Save current pathologies to configuration file."""
try:
data = {
"pathologies": [
asdict(pathology) for pathology in self.pathologies.values()
]
}
with open(self.config_file, "w") as f:
json.dump(data, f, indent=2)
self.logger.info(
f"Saved {len(self.pathologies)} pathologies to {self.config_file}"
)
return True
except Exception as e:
self.logger.error(f"Error saving pathologies config: {e}")
return False
def get_all_pathologies(self) -> dict[str, Pathology]:
"""Get all pathologies."""
return self.pathologies.copy()
def get_pathology(self, key: str) -> Pathology | None:
"""Get a specific pathology by key."""
return self.pathologies.get(key)
def add_pathology(self, pathology: Pathology) -> bool:
"""Add a new pathology."""
if pathology.key in self.pathologies:
self.logger.warning(f"Pathology with key '{pathology.key}' already exists")
return False
self.pathologies[pathology.key] = pathology
return self.save_pathologies()
def update_pathology(self, key: str, pathology: Pathology) -> bool:
"""Update an existing pathology."""
if key not in self.pathologies:
self.logger.warning(f"Pathology with key '{key}' does not exist")
return False
# If key is changing, remove old entry
if key != pathology.key:
del self.pathologies[key]
self.pathologies[pathology.key] = pathology
return self.save_pathologies()
def remove_pathology(self, key: str) -> bool:
"""Remove a pathology."""
if key not in self.pathologies:
self.logger.warning(f"Pathology with key '{key}' does not exist")
return False
del self.pathologies[key]
return self.save_pathologies()
def get_pathology_keys(self) -> list[str]:
"""Get list of all pathology keys."""
return list(self.pathologies.keys())
def get_display_names(self) -> dict[str, str]:
"""Get mapping of keys to display names."""
return {key: path.display_name for key, path in self.pathologies.items()}
def get_graph_colors(self) -> dict[str, str]:
"""Get mapping of pathology keys to graph colors."""
return {key: path.color for key, path in self.pathologies.items()}
def get_default_enabled_pathologies(self) -> list[str]:
"""Get list of pathologies that should be enabled by default in graphs."""
return [key for key, path in self.pathologies.items() if path.default_enabled]
def get_pathology_vars_dict(self) -> dict[str, tuple[Any, str]]:
"""Get pathology variables dictionary for UI compatibility."""
# This maintains compatibility with existing UI code
import tkinter as tk
return {
key: (tk.IntVar(value=0), path.display_name)
for key, path in self.pathologies.items()
}
def get_scale_info(self, key: str) -> tuple[int, int, str, str]:
"""Get scale information for a pathology."""
pathology = self.get_pathology(key)
if pathology:
return (
pathology.scale_min,
pathology.scale_max,
pathology.scale_info,
pathology.scale_orientation,
)
return (0, 10, "0-10", "normal")