Files
thechart/tests/test_graph_manager.py
William Valentin d7d4b332d4 Add medicine management functionality with UI and data handling
- Implemented MedicineManagementWindow for adding, editing, and removing medicines.
- Created MedicineManager to handle medicine configurations, including loading and saving to JSON.
- Updated UIManager to dynamically generate medicine-related UI components based on the MedicineManager.
- Enhanced test suite with mock objects for MedicineManager to ensure proper functionality in DataManager tests.
- Added validation for medicine input fields in the UI.
- Introduced default medicine configurations for initial setup.
2025-07-30 16:01:02 -07:00

789 lines
31 KiB
Python

"""
Tests for the GraphManager class.
"""
import os
import pytest
import pandas as pd
import tkinter as tk
from tkinter import ttk
from unittest.mock import Mock, patch
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'src'))
from src.graph_manager import GraphManager
class TestGraphManager:
"""Test cases for the GraphManager class."""
@pytest.fixture
def root_window(self):
"""Create a root window for testing."""
root = tk.Tk()
yield root
root.destroy()
@pytest.fixture
def parent_frame(self, root_window):
"""Create a parent frame for testing."""
frame = ttk.LabelFrame(root_window, text="Test Frame")
frame.pack()
return frame
def test_init(self, parent_frame):
"""Test GraphManager initialization."""
gm = GraphManager(parent_frame)
assert gm.parent_frame == parent_frame
assert isinstance(gm.toggle_vars, dict)
# Check symptom toggles
assert "depression" in gm.toggle_vars
assert "anxiety" in gm.toggle_vars
assert "sleep" in gm.toggle_vars
assert "appetite" in gm.toggle_vars
# Check medicine toggles
assert "bupropion" in gm.toggle_vars
assert "hydroxyzine" in gm.toggle_vars
assert "gabapentin" in gm.toggle_vars
assert "propranolol" in gm.toggle_vars
assert "quetiapine" in gm.toggle_vars
# Check that symptom toggles are initially True
for symptom in ["depression", "anxiety", "sleep", "appetite"]:
assert gm.toggle_vars[symptom].get() is True
# Check that some medicine toggles are True by default
assert gm.toggle_vars["bupropion"].get() is True
assert gm.toggle_vars["propranolol"].get() is True
# Check that some medicine toggles are False by default
assert gm.toggle_vars["hydroxyzine"].get() is False
assert gm.toggle_vars["gabapentin"].get() is False
assert gm.toggle_vars["quetiapine"].get() is False
def test_toggle_controls_creation(self, parent_frame):
"""Test that toggle controls are created properly."""
gm = GraphManager(parent_frame)
# Check that control frame exists
assert hasattr(gm, 'control_frame')
assert isinstance(gm.control_frame, ttk.Frame)
# Check that all toggle variables exist
expected_toggles = ["depression", "anxiety", "sleep", "appetite",
"bupropion", "hydroxyzine", "gabapentin", "propranolol", "quetiapine"]
for toggle in expected_toggles:
assert toggle in gm.toggle_vars
assert isinstance(gm.toggle_vars[toggle], tk.BooleanVar)
def test_graph_frame_creation(self, parent_frame):
"""Test that graph frame is created properly."""
gm = GraphManager(parent_frame)
assert hasattr(gm, 'graph_frame')
assert isinstance(gm.graph_frame, ttk.Frame)
@patch('matplotlib.pyplot.subplots')
def test_matplotlib_initialization(self, mock_subplots, parent_frame):
"""Test matplotlib figure and canvas initialization."""
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
assert gm.fig == mock_fig
assert gm.ax == mock_ax
assert gm.canvas == mock_canvas
mock_canvas_class.assert_called_once_with(figure=mock_fig, master=gm.graph_frame)
def test_update_graph_empty_dataframe(self, parent_frame):
"""Test updating graph with empty DataFrame."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg'):
gm = GraphManager(parent_frame)
# Test with empty DataFrame
empty_df = pd.DataFrame()
gm.update_graph(empty_df)
# Verify ax.clear() was called
mock_ax.clear.assert_called()
def test_update_graph_with_data(self, parent_frame, sample_dataframe):
"""Test updating graph with valid data."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
gm.update_graph(sample_dataframe)
# Verify methods were called
mock_ax.clear.assert_called()
mock_canvas.draw.assert_called()
def test_toggle_functionality(self, parent_frame, sample_dataframe):
"""Test that toggle variables affect graph display."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Turn off depression toggle
gm.toggle_vars["depression"].set(False)
gm.update_graph(sample_dataframe)
# The graph should still update (specific plotting logic would need more detailed testing)
mock_ax.clear.assert_called()
mock_canvas.draw.assert_called()
def test_close_method(self, parent_frame):
"""Test the close method."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
with patch('matplotlib.pyplot.close') as mock_plt_close:
gm = GraphManager(parent_frame)
gm.close()
mock_plt_close.assert_called_once_with(mock_fig)
def test_date_parsing_in_update_graph(self, parent_frame):
"""Test that date parsing works correctly in update_graph."""
# Create a DataFrame with date strings
df_with_dates = pd.DataFrame({
'date': ['2024-01-01', '2024-01-02', '2024-01-03'],
'depression': [3, 2, 4],
'anxiety': [2, 3, 1],
'sleep': [4, 3, 5],
'appetite': [3, 4, 2],
'bupropion': [1, 1, 0],
'hydroxyzine': [0, 1, 0],
'gabapentin': [2, 2, 1],
'propranolol': [1, 0, 1],
'note': ['Test note 1', 'Test note 2', '']
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
with patch('pandas.to_datetime') as mock_to_datetime:
gm = GraphManager(parent_frame)
gm.update_graph(df_with_dates)
# Verify pandas.to_datetime was called
mock_to_datetime.assert_called()
@patch('matplotlib.pyplot.subplots')
def test_exception_handling_in_update_graph(self, mock_subplots, parent_frame, sample_dataframe):
"""Test exception handling in update_graph method."""
mock_fig = Mock()
mock_ax = Mock()
mock_ax.plot.side_effect = Exception("Plot error")
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# This should not raise an exception, but handle it gracefully
try:
gm.update_graph(sample_dataframe)
except Exception as e:
pytest.fail(f"update_graph should handle exceptions gracefully, but raised: {e}")
def test_grid_configuration(self, parent_frame):
"""Test that grid configuration is set up correctly."""
gm = GraphManager(parent_frame)
# The parent frame should have grid configuration
# Note: In a real test, you might need to check grid_info() or similar
# This is a basic structure test
assert hasattr(gm, 'parent_frame')
assert hasattr(gm, 'control_frame')
assert hasattr(gm, 'graph_frame')
def test_canvas_widget_packing(self, parent_frame):
"""Test that canvas widget is properly packed."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas.get_tk_widget.return_value = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Verify get_tk_widget was called (for packing)
mock_canvas.get_tk_widget.assert_called()
def test_multiple_toggle_combinations(self, parent_frame, sample_dataframe):
"""Test various combinations of toggle states."""
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Test all toggles off
for toggle in gm.toggle_vars.values():
toggle.set(False)
gm.update_graph(sample_dataframe)
# Test mixed toggles
gm.toggle_vars["depression"].set(True)
gm.toggle_vars["anxiety"].set(False)
gm.update_graph(sample_dataframe)
# Verify the graph was updated in each case
assert mock_ax.clear.call_count >= 2
assert mock_canvas.draw.call_count >= 2
def test_calculate_daily_dose_empty_input(self, parent_frame):
"""Test dose calculation with empty/invalid input."""
gm = GraphManager(parent_frame)
# Test empty string
assert gm._calculate_daily_dose("") == 0.0
# Test NaN values
assert gm._calculate_daily_dose("nan") == 0.0
assert gm._calculate_daily_dose("NaN") == 0.0
# Test None (will be converted to string)
assert gm._calculate_daily_dose(None) == 0.0
def test_calculate_daily_dose_standard_format(self, parent_frame):
"""Test dose calculation with standard timestamp:dose format."""
gm = GraphManager(parent_frame)
# Single dose
dose_str = "2025-07-28 18:59:45:150mg"
assert gm._calculate_daily_dose(dose_str) == 150.0
# Multiple doses
dose_str = "2025-07-28 18:59:45:150mg|2025-07-28 19:34:19:75mg"
assert gm._calculate_daily_dose(dose_str) == 225.0
# Doses without units
dose_str = "2025-07-28 18:59:45:10|2025-07-28 19:34:19:5"
assert gm._calculate_daily_dose(dose_str) == 15.0
def test_calculate_daily_dose_with_symbols(self, parent_frame):
"""Test dose calculation with bullet symbols."""
gm = GraphManager(parent_frame)
# With bullet symbols
dose_str = "• • • • 2025-07-30 07:50:00:300"
assert gm._calculate_daily_dose(dose_str) == 300.0
# Multiple bullets
dose_str = "• 2025-07-30 22:50:00:10|• 2025-07-30 23:50:00:5"
assert gm._calculate_daily_dose(dose_str) == 15.0
def test_calculate_daily_dose_no_timestamp(self, parent_frame):
"""Test dose calculation without timestamp."""
gm = GraphManager(parent_frame)
# Just dose value
dose_str = "150mg"
assert gm._calculate_daily_dose(dose_str) == 150.0
# Multiple values without timestamp
dose_str = "100|50"
assert gm._calculate_daily_dose(dose_str) == 150.0
def test_calculate_daily_dose_decimal_values(self, parent_frame):
"""Test dose calculation with decimal values."""
gm = GraphManager(parent_frame)
# Decimal dose
dose_str = "2025-07-28 18:59:45:12.5mg"
assert gm._calculate_daily_dose(dose_str) == 12.5
# Multiple decimal doses
dose_str = "2025-07-28 18:59:45:12.5mg|2025-07-28 19:34:19:7.5mg"
assert gm._calculate_daily_dose(dose_str) == 20.0
def test_medicine_dose_plotting(self, parent_frame):
"""Test that medicine doses are plotted correctly."""
# Create a DataFrame with dose data
df_with_doses = pd.DataFrame({
'date': ['2024-01-01', '2024-01-02', '2024-01-03'],
'depression': [3, 2, 4],
'anxiety': [2, 3, 1],
'sleep': [4, 3, 5],
'appetite': [3, 4, 2],
'bupropion': [1, 1, 0],
'bupropion_doses': ['2024-01-01 08:00:00:150mg', '2024-01-02 08:00:00:300mg', ''],
'hydroxyzine': [0, 1, 0],
'hydroxyzine_doses': ['', '2024-01-02 20:00:00:25mg', ''],
'gabapentin': [0, 0, 0],
'gabapentin_doses': ['', '', ''],
'propranolol': [1, 0, 1],
'propranolol_doses': ['2024-01-01 12:00:00:10mg', '', '2024-01-03 12:00:00:20mg'],
'quetiapine': [0, 0, 0],
'quetiapine_doses': ['', '', ''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
gm.update_graph(df_with_doses)
# Verify that bar plots were called (for medicines with doses)
mock_ax.bar.assert_called()
# Verify canvas was redrawn
mock_canvas.draw.assert_called()
def test_medicine_toggle_functionality(self, parent_frame):
"""Test that medicine toggles affect dose display."""
df_with_doses = pd.DataFrame({
'date': ['2024-01-01'],
'depression': [3],
'anxiety': [2],
'sleep': [4],
'appetite': [3],
'bupropion': [1],
'bupropion_doses': ['2024-01-01 08:00:00:150mg'],
'hydroxyzine': [0],
'hydroxyzine_doses': [''],
'gabapentin': [0],
'gabapentin_doses': [''],
'propranolol': [1],
'propranolol_doses': ['2024-01-01 12:00:00:10mg'],
'quetiapine': [0],
'quetiapine_doses': [''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Turn off bupropion toggle
gm.toggle_vars["bupropion"].set(False)
gm.update_graph(df_with_doses)
# Turn on hydroxyzine toggle (though it has no doses)
gm.toggle_vars["hydroxyzine"].set(True)
gm.update_graph(df_with_doses)
# Verify the graph was updated
assert mock_ax.clear.call_count >= 2
assert mock_canvas.draw.call_count >= 2
def test_enhanced_legend_functionality(self, parent_frame):
"""Test that the enhanced legend displays correctly with medicine data."""
df_with_doses = pd.DataFrame({
'date': ['2024-01-01', '2024-01-02'],
'depression': [3, 2],
'anxiety': [2, 3],
'sleep': [4, 3],
'appetite': [3, 4],
'bupropion': [1, 1],
'bupropion_doses': ['2024-01-01 08:00:00:150mg', '2024-01-02 08:00:00:200mg'],
'hydroxyzine': [0, 0],
'hydroxyzine_doses': ['', ''],
'gabapentin': [0, 0],
'gabapentin_doses': ['', ''],
'propranolol': [1, 1],
'propranolol_doses': ['2024-01-01 12:00:00:10mg', '2024-01-02 12:00:00:15mg'],
'quetiapine': [0, 0],
'quetiapine_doses': ['', ''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_ax.get_legend_handles_labels.return_value = ([], [])
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Enable some medicine toggles
gm.toggle_vars["bupropion"].set(True)
gm.toggle_vars["propranolol"].set(True)
gm.toggle_vars["hydroxyzine"].set(True) # No dose data
gm.update_graph(df_with_doses)
# Verify that legend is called with enhanced parameters
mock_ax.legend.assert_called()
legend_call = mock_ax.legend.call_args
# Check that enhanced legend parameters are used
assert 'ncol' in legend_call.kwargs
assert legend_call.kwargs['ncol'] == 2
assert 'fontsize' in legend_call.kwargs
assert legend_call.kwargs['fontsize'] == 'small'
assert 'frameon' in legend_call.kwargs
assert legend_call.kwargs['frameon'] is True
def test_legend_with_medicines_without_data(self, parent_frame):
"""Test that medicines without dose data are properly tracked in legend."""
df_with_partial_doses = pd.DataFrame({
'date': ['2024-01-01'],
'depression': [3],
'anxiety': [2],
'sleep': [4],
'appetite': [3],
'bupropion': [1],
'bupropion_doses': ['2024-01-01 08:00:00:150mg'],
'hydroxyzine': [0],
'hydroxyzine_doses': [''], # No dose data
'gabapentin': [0],
'gabapentin_doses': [''], # No dose data
'propranolol': [0],
'propranolol_doses': [''],
'quetiapine': [0],
'quetiapine_doses': [''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
# Mock the legend handles and labels
original_handles = [Mock()]
original_labels = ['Bupropion (avg: 150.0mg)']
mock_ax.get_legend_handles_labels.return_value = (original_handles, original_labels)
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Enable medicines with and without data
gm.toggle_vars["bupropion"].set(True) # Has data
gm.toggle_vars["hydroxyzine"].set(True) # No data
gm.toggle_vars["gabapentin"].set(True) # No data
gm.update_graph(df_with_partial_doses)
# Verify legend was called
mock_ax.legend.assert_called()
# Check that the legend call includes additional handles/labels
legend_call = mock_ax.legend.call_args
handles, labels = legend_call.args[:2]
# Should have more labels than just the original ones
assert len(labels) > len(original_labels)
def test_average_dose_calculation_in_legend(self, parent_frame):
"""Test that average doses are correctly calculated and displayed in legend."""
df_with_varying_doses = pd.DataFrame({
'date': ['2024-01-01', '2024-01-02', '2024-01-03'],
'depression': [3, 2, 4],
'anxiety': [2, 3, 1],
'sleep': [4, 3, 5],
'appetite': [3, 4, 2],
'bupropion': [1, 1, 1],
'bupropion_doses': ['2024-01-01 08:00:00:100mg',
'2024-01-02 08:00:00:200mg',
'2024-01-03 08:00:00:150mg'], # Average should be 150mg
'propranolol': [1, 1, 0],
'propranolol_doses': ['2024-01-01 12:00:00:10mg',
'2024-01-02 12:00:00:20mg',
''], # Average should be 15mg
'hydroxyzine': [0, 0, 0],
'hydroxyzine_doses': ['', '', ''],
'gabapentin': [0, 0, 0],
'gabapentin_doses': ['', '', ''],
'quetiapine': [0, 0, 0],
'quetiapine_doses': ['', '', ''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Test the average calculation directly
bup_avg = gm._calculate_daily_dose('2024-01-01 08:00:00:100mg')
assert bup_avg == 100.0
prop_avg = gm._calculate_daily_dose('2024-01-01 12:00:00:10mg')
assert prop_avg == 10.0
# Test with full data
gm.toggle_vars["bupropion"].set(True)
gm.toggle_vars["propranolol"].set(True)
gm.update_graph(df_with_varying_doses)
# Verify that bars were plotted (indicating dose data was processed)
mock_ax.bar.assert_called()
def test_legend_positioning_and_styling(self, parent_frame):
"""Test that legend positioning and styling parameters are correctly applied."""
df_simple = pd.DataFrame({
'date': ['2024-01-01'],
'depression': [3],
'anxiety': [2],
'sleep': [4],
'appetite': [3],
'bupropion': [1],
'bupropion_doses': ['2024-01-01 08:00:00:150mg'],
'hydroxyzine': [0],
'hydroxyzine_doses': [''],
'gabapentin': [0],
'gabapentin_doses': [''],
'propranolol': [0],
'propranolol_doses': [''],
'quetiapine': [0],
'quetiapine_doses': [''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_ax.get_legend_handles_labels.return_value = ([Mock()], ['Test Label'])
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
gm.update_graph(df_simple)
# Verify legend styling parameters
mock_ax.legend.assert_called()
legend_call = mock_ax.legend.call_args
expected_params = {
'loc': 'upper left',
'bbox_to_anchor': (0, 1),
'ncol': 2,
'fontsize': 'small',
'frameon': True,
'fancybox': True,
'shadow': True,
'framealpha': 0.9
}
for param, expected_value in expected_params.items():
assert param in legend_call.kwargs
assert legend_call.kwargs[param] == expected_value
def test_medicine_tracking_lists(self, parent_frame):
"""Test that medicines are correctly categorized into with_data and without_data lists."""
df_mixed_data = pd.DataFrame({
'date': ['2024-01-01', '2024-01-02'],
'depression': [3, 2],
'anxiety': [2, 3],
'sleep': [4, 3],
'appetite': [3, 4],
# Medicines with data
'bupropion': [1, 1],
'bupropion_doses': ['2024-01-01 08:00:00:150mg', '2024-01-02 08:00:00:200mg'],
'propranolol': [1, 1],
'propranolol_doses': ['2024-01-01 12:00:00:10mg', '2024-01-02 12:00:00:15mg'],
# Medicines without data (but toggled on)
'hydroxyzine': [0, 0],
'hydroxyzine_doses': ['', ''],
'gabapentin': [0, 0],
'gabapentin_doses': ['', ''],
'quetiapine': [0, 0],
'quetiapine_doses': ['', ''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_ax.get_legend_handles_labels.return_value = ([], [])
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
# Enable all medicines
gm.toggle_vars["bupropion"].set(True) # Has data
gm.toggle_vars["propranolol"].set(True) # Has data
gm.toggle_vars["hydroxyzine"].set(True) # No data
gm.toggle_vars["gabapentin"].set(True) # No data
gm.toggle_vars["quetiapine"].set(False) # Disabled
gm.update_graph(df_mixed_data)
# Verify that the method was called and plotting occurred
mock_ax.bar.assert_called() # Should be called for medicines with data
mock_ax.legend.assert_called() # Legend should be created
def test_legend_dummy_handle_creation(self, parent_frame):
"""Test that dummy handles are created for medicines without data."""
df_no_dose_data = pd.DataFrame({
'date': ['2024-01-01'],
'depression': [3],
'anxiety': [2],
'sleep': [4],
'appetite': [3],
'bupropion': [0],
'bupropion_doses': [''],
'hydroxyzine': [0],
'hydroxyzine_doses': [''],
'gabapentin': [0],
'gabapentin_doses': [''],
'propranolol': [0],
'propranolol_doses': [''],
'quetiapine': [0],
'quetiapine_doses': [''],
})
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_ax.get_legend_handles_labels.return_value = ([Mock()], ['Depression'])
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
# Mock Rectangle import for dummy handle creation
with patch('matplotlib.patches.Rectangle') as mock_rectangle:
mock_dummy_handle = Mock()
mock_rectangle.return_value = mock_dummy_handle
gm = GraphManager(parent_frame)
# Enable some medicines without data
gm.toggle_vars["hydroxyzine"].set(True)
gm.toggle_vars["gabapentin"].set(True)
gm.update_graph(df_no_dose_data)
# If there are medicines without data, Rectangle should be called
# to create dummy handles
if gm.toggle_vars["hydroxyzine"].get() or gm.toggle_vars["gabapentin"].get():
mock_rectangle.assert_called()
def test_empty_dataframe_legend_handling(self, parent_frame):
"""Test that legend is handled correctly with empty DataFrame."""
empty_df = pd.DataFrame()
with patch('matplotlib.pyplot.subplots') as mock_subplots:
mock_fig = Mock()
mock_ax = Mock()
mock_subplots.return_value = (mock_fig, mock_ax)
with patch('graph_manager.FigureCanvasTkAgg') as mock_canvas_class:
mock_canvas = Mock()
mock_canvas_class.return_value = mock_canvas
gm = GraphManager(parent_frame)
gm.update_graph(empty_df)
# With empty data, legend should not be called
mock_ax.legend.assert_not_called()
mock_ax.clear.assert_called()
mock_canvas.draw.assert_called()
def test_dose_calculation_comprehensive(self, parent_frame, sample_dose_data):
"""Test dose calculation with comprehensive test cases."""
gm = GraphManager(parent_frame)
# Test all sample dose data cases
assert gm._calculate_daily_dose(sample_dose_data['standard_format']) == 225.0
assert gm._calculate_daily_dose(sample_dose_data['with_bullets']) == 300.0
assert gm._calculate_daily_dose(sample_dose_data['decimal_doses']) == 20.0
assert gm._calculate_daily_dose(sample_dose_data['no_timestamp']) == 150.0
assert gm._calculate_daily_dose(sample_dose_data['mixed_format']) == 85.0
assert gm._calculate_daily_dose(sample_dose_data['empty_string']) == 0.0
assert gm._calculate_daily_dose(sample_dose_data['nan_value']) == 0.0
assert gm._calculate_daily_dose(sample_dose_data['no_units']) == 15.0
def test_dose_calculation_edge_cases(self, parent_frame):
"""Test dose calculation with edge cases."""
gm = GraphManager(parent_frame)
# Test with malformed data
assert gm._calculate_daily_dose("malformed:data") == 0.0
assert gm._calculate_daily_dose("::::") == 0.0
assert gm._calculate_daily_dose("2025-07-28:") == 0.0
assert gm._calculate_daily_dose("2025-07-28::mg") == 0.0
# Test with partial data
assert gm._calculate_daily_dose("2025-07-28 18:59:45:150") == 150.0 # no units
assert gm._calculate_daily_dose("150mg") == 150.0 # no timestamp
# Test with spaces and special characters
assert gm._calculate_daily_dose(" 2025-07-28 18:59:45:150mg ") == 150.0
assert gm._calculate_daily_dose("••• 2025-07-28 18:59:45:150mg •••") == 150.0