Files
thechart/src/graph_manager.py

310 lines
12 KiB
Python

import tkinter as tk
from tkinter import ttk
import matplotlib.figure
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.axes import Axes
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
class GraphManager:
"""Handle all graph-related operations for the application."""
def __init__(self, parent_frame: ttk.LabelFrame) -> None:
self.parent_frame: ttk.LabelFrame = parent_frame
# Configure graph frame to expand
self.parent_frame.grid_rowconfigure(0, weight=1)
self.parent_frame.grid_columnconfigure(0, weight=1)
# Initialize toggle variables for chart elements
self.toggle_vars: dict[str, tk.BooleanVar] = {
"depression": tk.BooleanVar(value=True),
"anxiety": tk.BooleanVar(value=True),
"sleep": tk.BooleanVar(value=True),
"appetite": tk.BooleanVar(value=True),
"bupropion": tk.BooleanVar(value=False),
"hydroxyzine": tk.BooleanVar(value=False),
"gabapentin": tk.BooleanVar(value=False),
"propranolol": tk.BooleanVar(value=False),
"quetiapine": tk.BooleanVar(value=False),
}
# Create control frame for toggles
self.control_frame: ttk.Frame = ttk.Frame(self.parent_frame)
self.control_frame.grid(row=0, column=0, sticky="ew", padx=5, pady=5)
# Create toggle checkboxes
self._create_chart_toggles()
# Create graph frame
self.graph_frame: ttk.Frame = ttk.Frame(self.parent_frame)
self.graph_frame.grid(row=1, column=0, sticky="nsew", padx=5, pady=5)
# Reconfigure parent frame for new layout
self.parent_frame.grid_rowconfigure(1, weight=1)
self.parent_frame.grid_columnconfigure(0, weight=1)
# Initialize matplotlib figure and canvas
self.fig: matplotlib.figure.Figure
self.ax: Axes
self.fig, self.ax = plt.subplots()
self.canvas: FigureCanvasTkAgg = FigureCanvasTkAgg(
figure=self.fig, master=self.graph_frame
)
self.canvas.get_tk_widget().pack(fill="both", expand=True)
# Store current data for replotting
self.current_data: pd.DataFrame = pd.DataFrame()
def _create_chart_toggles(self) -> None:
"""Create toggle controls for chart elements."""
ttk.Label(self.control_frame, text="Show/Hide Elements:").pack(
side="left", padx=5
)
# Symptoms toggles
symptoms_frame = ttk.LabelFrame(self.control_frame, text="Symptoms")
symptoms_frame.pack(side="left", padx=5, pady=2)
symptom_configs = [
("depression", "Depression"),
("anxiety", "Anxiety"),
("sleep", "Sleep"),
("appetite", "Appetite"),
]
for key, label in symptom_configs:
checkbox = ttk.Checkbutton(
symptoms_frame,
text=label,
variable=self.toggle_vars[key],
command=self._handle_toggle_changed,
)
checkbox.pack(side="left", padx=3)
# Medicines toggles
medicines_frame = ttk.LabelFrame(self.control_frame, text="Medicines")
medicines_frame.pack(side="left", padx=5, pady=2)
medicine_configs = [
("bupropion", "Bupropion"),
("hydroxyzine", "Hydroxyzine"),
("gabapentin", "Gabapentin"),
("propranolol", "Propranolol"),
("quetiapine", "Quetiapine"),
]
for key, label in medicine_configs:
checkbox = ttk.Checkbutton(
medicines_frame,
text=label,
variable=self.toggle_vars[key],
command=self._handle_toggle_changed,
)
checkbox.pack(side="left", padx=3)
def _handle_toggle_changed(self) -> None:
"""Handle toggle changes by replotting the graph."""
if not self.current_data.empty:
self._plot_graph_data(self.current_data)
def update_graph(self, df: pd.DataFrame) -> None:
"""Update the graph with new data."""
self.current_data = df.copy() if not df.empty else pd.DataFrame()
self._plot_graph_data(df)
def _plot_graph_data(self, df: pd.DataFrame) -> None:
"""Plot the graph data with current toggle settings."""
self.ax.clear()
if not df.empty:
# Convert dates and sort
df = df.copy() # Create a copy to avoid modifying the original
df["date"] = pd.to_datetime(df["date"])
df = df.sort_values(by="date")
df.set_index(keys="date", inplace=True)
# Track if any series are plotted
has_plotted_series = False
# Plot data series based on toggle states
if self.toggle_vars["depression"].get():
self._plot_series(
df, "depression", "Depression (0:good, 10:bad)", "o", "-"
)
has_plotted_series = True
if self.toggle_vars["anxiety"].get():
self._plot_series(df, "anxiety", "Anxiety (0:good, 10:bad)", "o", "-")
has_plotted_series = True
if self.toggle_vars["sleep"].get():
self._plot_series(df, "sleep", "Sleep (0:bad, 10:good)", "o", "dashed")
has_plotted_series = True
if self.toggle_vars["appetite"].get():
self._plot_series(
df, "appetite", "Appetite (0:bad, 10:good)", "o", "dashed"
)
has_plotted_series = True
# Plot medicine dose data
medicine_colors = {
"bupropion": "#FF6B6B", # Red
"hydroxyzine": "#4ECDC4", # Teal
"gabapentin": "#45B7D1", # Blue
"propranolol": "#96CEB4", # Green
"quetiapine": "#FFEAA7", # Yellow
}
medicines = [
"bupropion",
"hydroxyzine",
"gabapentin",
"propranolol",
"quetiapine",
]
# Track medicines with and without data for legend
medicines_with_data = []
medicines_without_data = []
for medicine in medicines:
dose_column = f"{medicine}_doses"
if self.toggle_vars[medicine].get() and dose_column in df.columns:
# Calculate daily dose totals
daily_doses = []
for dose_str in df[dose_column]:
total_dose = self._calculate_daily_dose(dose_str)
daily_doses.append(total_dose)
# Only plot if there are non-zero doses
if any(dose > 0 for dose in daily_doses):
medicines_with_data.append(medicine)
# Scale doses for better visibility
# (divide by 10 to fit with 0-10 scale)
scaled_doses = [dose / 10 for dose in daily_doses]
# Calculate total dosage for this medicine across all days
total_medicine_dose = sum(daily_doses)
non_zero_doses = [d for d in daily_doses if d > 0]
avg_dose = total_medicine_dose / len(non_zero_doses)
# Create more informative label
label = f"{medicine.capitalize()} (avg: {avg_dose:.1f}mg)"
self.ax.bar(
df.index,
scaled_doses,
alpha=0.6,
color=medicine_colors.get(medicine, "#DDA0DD"),
label=label,
width=0.6,
bottom=-max(scaled_doses) * 1.1 if scaled_doses else -1,
)
has_plotted_series = True
else:
# Medicine is toggled on but has no dose data
if self.toggle_vars[medicine].get():
medicines_without_data.append(medicine)
# Configure graph appearance
if has_plotted_series:
# Get current legend handles and labels
handles, labels = self.ax.get_legend_handles_labels()
# Add information about medicines without data if any are toggled on
if medicines_without_data:
# Add a text note about medicines without dose data
med_list = ", ".join(medicines_without_data)
info_text = f"Tracked (no doses): {med_list}"
labels.append(info_text)
# Create a dummy handle for the info text (invisible)
from matplotlib.patches import Rectangle
dummy_handle = Rectangle(
(0, 0), 1, 1, fc="w", fill=False, edgecolor="none", linewidth=0
)
handles.append(dummy_handle)
# Create an expanded legend with better formatting
self.ax.legend(
handles,
labels,
loc="upper left",
bbox_to_anchor=(0, 1),
ncol=2, # Display in 2 columns for better space usage
fontsize="small",
frameon=True,
fancybox=True,
shadow=True,
framealpha=0.9,
)
self.ax.set_title("Medication Effects Over Time")
self.ax.set_xlabel("Date")
self.ax.set_ylabel("Rating (0-10) / Dose (mg)")
# Adjust y-axis to accommodate medicine bars at bottom
current_ylim = self.ax.get_ylim()
self.ax.set_ylim(bottom=current_ylim[0], top=max(10, current_ylim[1]))
self.fig.autofmt_xdate()
# Redraw the canvas
self.canvas.draw()
def _plot_series(
self,
df: pd.DataFrame,
column: str,
label: str,
marker: str,
linestyle: str,
) -> None:
"""Helper method to plot a data series."""
self.ax.plot(
df.index,
df[column],
marker=marker,
linestyle=linestyle,
label=label,
)
def _calculate_daily_dose(self, dose_str: str) -> float:
"""Calculate total daily dose from dose string format."""
if not dose_str or pd.isna(dose_str) or str(dose_str).lower() == "nan":
return 0.0
total_dose = 0.0
# Handle different separators and clean the string
dose_str = str(dose_str).replace("", "").strip()
# Split by | or by spaces if no | present
dose_entries = dose_str.split("|") if "|" in dose_str else [dose_str]
for entry in dose_entries:
entry = entry.strip()
if not entry:
continue
try:
# Extract dose part after the last colon (timestamp:dose format)
dose_part = entry.split(":")[-1] if ":" in entry else entry
# Extract numeric part from dose (e.g., "150mg" -> 150)
dose_value = ""
for char in dose_part:
if char.isdigit() or char == ".":
dose_value += char
elif dose_value: # Stop at first non-digit after finding digits
break
if dose_value:
total_dose += float(dose_value)
except (ValueError, IndexError):
continue
return total_dose
def close(self) -> None:
"""Clean up resources."""
plt.close(self.fig)