chore: initialize repository scaffolding

This commit is contained in:
William Valentin
2025-09-23 10:15:09 -07:00
commit fed8b629c7
3 changed files with 712 additions and 0 deletions

17
.gitignore vendored Normal file
View File

@@ -0,0 +1,17 @@
__pycache__/
*.py[cod]
*.egg-info/
.env
.venv/
.env.*
.pytest_cache/
.coverage
htmlcov/
node_modules/
.next/
dist/
build/
.DS_Store
.idea/
.vscode/
coverage/

692
INSTRUCTIONS.md Normal file
View File

@@ -0,0 +1,692 @@
# SPEC-1 Classy Perplexitystyle News Aggregator (Raspberry Pi 5 K8s)
## Background
You want a Perplexitystyle web app that aggregates news from a defined pool of reference websites and presents results in a classy, attractive, highly responsive UI. The target runtime is a Raspberry Pi 5 Kubernetes cluster, so the system must be lightweight, ARM64friendly, and resilient to node churn or SDcard fragility. The product should feel like a modern AI assistant for news discovery: fast search, crisp summaries, clear source attributions, and mobilefirst ergonomics.
Initial working assumptions (to be confirmed):
* Content sources are a curated list of reputable outlets and blogs that permit aggregation with proper linking and snippetlength quoting.
* We will index headlines, metadata, and short excerpts; fulltext storage will be minimized or avoided unless licensed.
* The app will support semantic search + conversational Q\&A over the indexed corpus, with citations to original articles.
* Realtime(ish) freshness target: new articles discoverable within 25 minutes of publication.
* UI aims to echo Perplexitys clean card layout, with source badges, inline citations, and a composer panel for queries.
* Deployment must fit on 24 ARM64 nodes, using lightweight containers and a small replicated datastore.
## Requirements
**Scope for MVP**: Start with **Reuters** as the single source. Use official **RSS/Atom feeds and daily sitemaps** when available; gracefully fall back to HTML scraping for sections without feeds, storing only metadata/snippets with links. Freshness target 25 minutes. UI mirrors Perplexitys card+chat layout with inline citations.
### MoSCoW
**Musthave**
* Aggregate from Reuters via RSS/Atom + sitemaps; fallback HTML scraper with robots.txt compliance toggle.
* ARM64ready containers deployable on Raspberry Pi 5 K8s (k3s or MicroK8s).
* Ingest pipeline with deduplication, canonical URL normalization, and ratelimit/backoff.
* Index headlines, authors, timestamps, topics, short excerpt (<= 320 chars), and source URL.
* Fulltext search over stored fields; semantic search embeddings over titles+snippets.
* Summarization and onpage Q\&A with **clear citations** to source URLs.
* Classy, responsive UI with Perplexitystyle query composer, results cards, and source badges.
* Observability: structured logs, basic metrics (ingest latency, queue depth, 95p response), and alerting.
* Legal safety rails: configurable snippet length, perdomain robots policy, and killswitch per source.
**Shouldhave**
* Topic taxonomy and tags (World, Business, Tech, etc.).
* Incremental sitemap polling (by date) + changelist RSS polling with jitter to avoid burst load.
* Reader mode extraction (readabilitystyle) used **only for summarization** in memory, not stored.
* Caching layer (HTTP + summary cache) to keep Raspberry Pi costs low.
* Multinode HA for index and queue; rolling updates.
**Couldhave**
* User accounts for saved searches and daily digests.
* Multisource expansion via declarative YAML for new sites.
* Relatedstory clustering and timeline views.
* Basic mobile PWA installability and offline readlater for snippets.
**Wonthave (MVP)**
* Paywalled content bypassing or fulltext storage of copyrighted articles.
* Personalized recommendations or email digests.
* Editorial curation tooling beyond tags and pinning.
## Method
### Highlevel architecture
```plantuml
@startuml
skinparam componentStyle rectangle
skinparam shadowing false
skinparam ArrowColor #888
skinparam DefaultFontName Inter
rectangle "k0s Cluster (ARM64 Raspberry Pi 5)" as K8S {
node "Namespace: news" as NS {
[Ingest Scheduler]
(CronJobs)
[Feed+Sitemap Poller]
(FastAPI Worker)
[HTML Scraper]
(Worker, Trafilatura)
[Normalizer/Dedupe]
(Worker)
[Embedder]
(Worker -> OpenAI embeddings)
[Summarizer]
(Worker -> OpenAI gpt-4o-mini)
database "PostgreSQL + pgvector" as PG
[Redis]
(Cache + Queue)
[API Gateway]
(FastAPI)
[Web UI]
(Next.js, Tailwind, shadcn)
}
}
[Feed+Sitemap Poller] --> [HTML Scraper]
[HTML Scraper] --> [Normalizer/Dedupe]
[Normalizer/Dedupe] --> PG
[Embedder] --> PG
[Summarizer] --> PG
[Ingest Scheduler] --> [Feed+Sitemap Poller]
[Embedder] --> [OpenAI Embeddings API]
[Summarizer] --> [OpenAI Chat Completions]
[API Gateway] --> PG
[API Gateway] --> Redis
[Web UI] --> [API Gateway]
@enduml
```
**Why these choices (MVP):**
* **Source**: Start with **Reuters** using news sitemaps (with pagination parameters) and RSS; where feeds dont exist, scrape respectfully with robots awareness.
* **Storage**: **PostgreSQL + pgvector** keeps the stack compact (one DB for metadata, text search, and vectors). Postgres fulltext covers keyword search; pgvector powers semantic search.
* **Workers**: Python **FastAPI** workers using **Trafilatura** for robust article extraction and metadata parsing. **Redis** as the lightweight queue/cache (Dramatiq or RQ).
* **Summaries/Q\&A**: Ondemand summaries and answer synthesis via **gpt4omini** with **inline citations**. Embeddings via **textembedding3small**. Both accessed through API keys/secrets in Kubernetes.
* **UI**: **Next.js 14 App Router**, Tailwind + shadcn for a Perplexitystyle, lowlatency interface.
* **k0s**: ARM64friendly. Use **nginxingress** for HTTP routing, with optional **HAProxy Ingress** for TCP/advanced policies.
### Data model (PostgreSQL)
```sql
-- Sources (static for MVP)
CREATE TABLE sources (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL UNIQUE, -- e.g., 'Reuters'
base_url TEXT NOT NULL, -- e.g., https://www.reuters.com
rss_urls TEXT[] NOT NULL DEFAULT '{}',
sitemap_urls TEXT[] NOT NULL DEFAULT '{}',
robots_txt TEXT,
enabled BOOLEAN NOT NULL DEFAULT true
);
-- Raw fetch jobs (observability + retries)
CREATE TABLE fetch_jobs (
id BIGSERIAL PRIMARY KEY,
source_id INT REFERENCES sources(id),
url TEXT NOT NULL,
kind TEXT NOT NULL CHECK (kind IN ('rss','sitemap','article')),
status TEXT NOT NULL CHECK (status IN ('queued','fetched','parsed','failed')),
http_status INT,
etag TEXT,
last_modified TIMESTAMPTZ,
attempts INT NOT NULL DEFAULT 0,
error TEXT,
created_at TIMESTAMPTZ NOT NULL DEFAULT now(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT now()
);
CREATE INDEX ON fetch_jobs (status, created_at);
-- Canonical articles (no copyrighted full text stored)
CREATE TABLE articles (
id BIGSERIAL PRIMARY KEY,
source_id INT REFERENCES sources(id) NOT NULL,
canonical_url TEXT NOT NULL,
url_hash BYTEA NOT NULL, -- SHA-256 of canonical_url
title TEXT NOT NULL,
author TEXT,
category TEXT, -- World, Business, Tech, etc.
published_at TIMESTAMPTZ,
fetched_at TIMESTAMPTZ NOT NULL DEFAULT now(),
snippet TEXT, -- <= 320 chars, from feed/lede
summary TEXT, -- model-generated abstract
image_url TEXT,
language TEXT DEFAULT 'en',
UNIQUE (source_id, url_hash)
);
CREATE INDEX ON articles (published_at DESC);
CREATE INDEX ON articles USING GIN (to_tsvector('english', coalesce(title,'') || ' ' || coalesce(snippet,'')));
-- Embeddings for semantic search (title+snippet)
CREATE EXTENSION IF NOT EXISTS vector;
CREATE TABLE article_embeddings (
article_id BIGINT PRIMARY KEY REFERENCES articles(id) ON DELETE CASCADE,
embedding vector(1536) -- dimension for text-embedding-3-small
);
CREATE INDEX ON article_embeddings USING ivfflat (embedding vector_cosine_ops);
-- Tags and mapping (optional but handy)
CREATE TABLE tags (
id SERIAL PRIMARY KEY,
name TEXT UNIQUE
);
CREATE TABLE article_tags (
article_id BIGINT REFERENCES articles(id) ON DELETE CASCADE,
tag_id INT REFERENCES tags(id) ON DELETE CASCADE,
PRIMARY KEY (article_id, tag_id)
);
```
### Ingestion flow
1. **Discovery**
* Poll **RSS/Atom** endpoints with ETag/LastModified to minimize bandwidth.
* Poll **news sitemaps** using incremental parameters (e.g., `from=` offsets when supported). Maintain perendpoint cursors.
* For sections without feeds, enqueue **HTML pages** discovered from site index pages (ratelimited) and respect `robots.txt` (configurable).
2. **Fetch & Extract**
* HTTP client with retry + exponential backoff and perhost concurrency caps (e.g., 24). Respect `Cache-Control` where present.
* Use **Trafilatura** with `favor_precision=true` to extract main content for **inmemory summarization only**; do not persist full text.
* Generate a **canonical URL** (resolve redirects, strip tracking params) and compute `url_hash`.
3. **Normalize & Deduplicate**
* If `(source_id, url_hash)` exists, skip insert; else create `articles` row with metadata and **snippet** (<=320 chars).
* Classify category using rulebased hints (URL path, RSS category) with a fallback lightweight classifier.
4. **Summaries & Embeddings**
* Create a short **summary** (6090 words, neutral tone) with inline citation marker `[1]` → canonical URL.
* Compute **embedding** on `(title + "
" + snippet)` and upsert into `article_embeddings`.
5. **Indexing & Cache**
* Postgres GIN index supports keyword search; pgvector handles ANN semantic search.
* Cache hot queries and summaries in Redis for 515 minutes.
### API design (FastAPI)
* `GET /v1/search?q=&mode=hybrid&page=` — Hybrid search (keyword + vector rerank), returns cards with title, snippet, badges, and citations.
* `GET /v1/articles/{id}` — Metadata + summary.
* `POST /v1/ask` — Conversational answer over topk retrieved articles, always with citations.
* `POST /v1/feedback` — Thumbs up/down and optional comment.
### UI flows (Next.js 14)
* **Home**: Center composer, query suggestions, trending topics.
* **Results**: Perplexitystyle answer at top with source chips; below, cards for each cited article; sticky composer for followups.
* **Interactions**: Cmd/CtrlK global search, `?` keyboard help, skeleton loaders, optimistic UI.
### Kubernetes (k0s) deployment sketch
* **Namespaces**: `news`, `news-observe`.
* **Ingress**: `nginx-ingress` for HTTPS; optional parallel **HAProxy Ingress** for TCP/advanced use. Certs via certmanager + DNS01 or HTTP01.
* **Deployments** (ARM64 images):
* `api` (FastAPI, Uvicorn Gunicorn): 2 replicas, HPA on CPU 60% & p95 latency SLI.
* `web` (Next.js): 2 replicas, static export (optional) behind Node adapter.
* `worker` (ingest/summarize/embed): 24 replicas, separate queues for `poll`, `scrape`, `summ`, `embed`.
* `postgres` (Bitnami ARM64) with persistent volume; enable `pgvector` extension.
* `redis` (Bitnami ARM64) for cache/queue.
* **RBAC/Secrets**: Kubernetes Secrets for API keys; service accounts per deployment.
* **Resources (starting)**: api 200m/512Mi; web 100m/256Mi; worker 300m/1Gi; redis 50m/256Mi; postgres 250m/2Gi.
* **Autoscaling**: HPA + VPA recommendations; cluster metrics via kubemetricsserver.
### Ranking & answer synthesis
* **Hybrid search**: BM25 (Postgres fulltext) for recall → take top 50; compute cosine similarity on vectors → rerank → top 8.
* **Answer**: Prompt model with the top 6 snippets + titles and URLs; enforce **citation after each sentence** where evidence exists. Refuse to answer beyond source material.
### Rate limiting & ethics
* Persource QPS caps (e.g., 0.51 rps) and adaptive backoff.
* Honor robots.txt by default; switchable per your policy. Always link prominently to original.
* Snippets limited; no storage of full article text.
## Implementation
### 0) Repo layout
```
news-agg/
apps/
api/ # FastAPI (Python 3.11)
web/ # Next.js 14 UI
workers/ # poll/scrape/summarize/embed (FastAPI tasks + RQ/Dramatiq)
deploy/
base/ # K8s Kustomize base (namespaces, RBAC, NetworkPolicies)
overlays/
pi-prod/
kustomization.yaml
postgres.yaml
redis.yaml
api.yaml
web.yaml
workers.yaml
cron-poller.yaml
ingress-nginx.yaml
ingress-haproxy.yaml (optional)
secrets.example.yaml
ops/
helm-values/
bitnami-postgresql.yaml
bitnami-redis.yaml
scripts/
build.sh # multi-arch docker buildx
db_migrate.sql # tables + pgvector
```
### 1) Container images (ARM64)
* **Python base**: `python:3.11-slim` + `uv`/`pip-tools`; compile wheels at build time.
* **Node**: `node:18-alpine` → `next build` then run with `node` or export static.
* Use **`docker buildx`** to produce `linux/arm64` images. Example:
```
docker buildx build --platform linux/arm64 -t registry/pi/news-api:0.1 -f apps/api/Dockerfile --push .
```
**apps/api/Dockerfile** (snippet)
```Dockerfile
FROM python:3.11-slim
RUN apt-get update && apt-get install -y build-essential libpq-dev && rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY apps/api/pyproject.toml apps/api/uv.lock ./
RUN pip install -U pip && pip install uv
RUN uv pip install --system -r requirements.txt || true
COPY apps/api/ .
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"]
```
### 2) k0s cluster prep (once)
* Install **nginxingress** and (optionally) **HAProxy Ingress** via manifests/Helm.
* Install **cert-manager** for TLS if exposing publicly.
* Add **metricsserver** for HPA and **KEDA** (optional) for queue-based scaling.
### 3) Datastores
**PostgreSQL (Bitnami, pgvector)**
```yaml
# deploy/overlays/pi-prod/postgres.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata: { name: pgdata, namespace: news }
spec:
accessModes: ["ReadWriteOnce"]
resources: { requests: { storage: 20Gi } }
---
apiVersion: v1
kind: ConfigMap
metadata: { name: pg-init, namespace: news }
data:
00-init.sql: |
CREATE EXTENSION IF NOT EXISTS vector;
-- migrations applied by apps on startup too
---
apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata: { name: pg, namespace: kube-system }
spec:
chart: oci://registry-1.docker.io/bitnamicharts/postgresql
targetNamespace: news
version: 15.x.x
valuesContent: |
image:
repository: bitnami/postgresql
tag: 15-debian-12
primary:
extraVolumes:
- name: pg-init
configMap: { name: pg-init }
extraVolumeMounts:
- name: pg-init
mountPath: /docker-entrypoint-initdb.d
persistence:
existingClaim: pgdata
auth:
username: news
password: ${PG_PASSWORD}
database: news
```
**Redis (Bitnami)**
```yaml
# deploy/overlays/pi-prod/redis.yaml
apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata: { name: redis, namespace: kube-system }
spec:
chart: oci://registry-1.docker.io/bitnamicharts/redis
targetNamespace: news
version: 18.x.x
valuesContent: |
architecture: standalone
auth:
enabled: false
```
### 4) Secrets & Config
```yaml
# deploy/overlays/pi-prod/secrets.example.yaml (copy to secrets.yaml and fill)
apiVersion: v1
kind: Secret
metadata: { name: app-secrets, namespace: news }
type: Opaque
data:
OPENAI_API_KEY: <base64>
APP_SIGNING_KEY: <base64>
---
apiVersion: v1
kind: ConfigMap
metadata: { name: app-config, namespace: news }
data:
SNIPPET_MAX: "320"
SOURCES: |
- name: Reuters
base_url: https://www.reuters.com
rss:
- https://www.reuters.com/rss/worldNews
sitemaps:
- https://www.reuters.com/sitemap_news.xml
robots_policy: honor
RANKING: "hybrid"
```
### 5) Workers (poll, scrape, summarize, embed)
```yaml
# deploy/overlays/pi-prod/workers.yaml
apiVersion: apps/v1
kind: Deployment
metadata: { name: workers, namespace: news }
spec:
replicas: 3
selector: { matchLabels: { app: workers } }
template:
metadata: { labels: { app: workers } }
spec:
containers:
- name: workers
image: registry/pi/news-workers:0.1
envFrom:
- secretRef: { name: app-secrets }
- configMapRef: { name: app-config }
env:
- { name: REDIS_URL, value: redis://redis-master.news.svc.cluster.local:6379/0 }
- { name: DATABASE_URL, value: postgresql://news:$(PG_PASSWORD)@pg-postgresql.news.svc.cluster.local:5432/news }
resources:
requests: { cpu: "300m", memory: "1Gi" }
limits: { cpu: "900m", memory: "2Gi" }
livenessProbe: { httpGet: { path: /healthz, port: 8080 }, initialDelaySeconds: 15 }
readinessProbe:{ httpGet: { path: /readyz, port: 8080 }, initialDelaySeconds: 5 }
```
**Cron: feed/sitemap polling**
```yaml
apiVersion: batch/v1
kind: CronJob
metadata: { name: poller, namespace: news }
spec:
schedule: "*/2 * * * *" # every 2 minutes
jobTemplate:
spec:
template:
spec:
restartPolicy: OnFailure
containers:
- name: poll
image: registry/pi/news-workers:0.1
args: ["poll"]
envFrom:
- secretRef: { name: app-secrets }
- configMapRef: { name: app-config }
```
### 6) API service (FastAPI)
```yaml
# deploy/overlays/pi-prod/api.yaml
apiVersion: apps/v1
kind: Deployment
metadata: { name: api, namespace: news }
spec:
replicas: 2
selector: { matchLabels: { app: api } }
template:
metadata: { labels: { app: api } }
spec:
containers:
- name: api
image: registry/pi/news-api:0.1
ports: [{ containerPort: 8080 }]
envFrom:
- secretRef: { name: app-secrets }
- configMapRef: { name: app-config }
env:
- { name: REDIS_URL, value: redis://redis-master.news.svc.cluster.local:6379/0 }
- { name: DATABASE_URL, value: postgresql://news:$(PG_PASSWORD)@pg-postgresql.news.svc.cluster.local:5432/news }
resources:
requests: { cpu: "200m", memory: "512Mi" }
limits: { cpu: "600m", memory: "1Gi" }
---
apiVersion: v1
kind: Service
metadata: { name: api, namespace: news }
spec:
selector: { app: api }
ports:
- name: http
port: 80
targetPort: 8080
```
**FastAPI search (sketch)**
```python
# apps/api/search.py
from pgvector.psycopg import register_vector
import psycopg, numpy as np
EMBED_DIM = 1536
def hybrid_search(conn, q, k=8):
with conn.cursor() as cur:
# 1) Embedding
v = embed(q) # call OpenAI embeddings
# 2) Keyword recall
cur.execute("""
SELECT id, title, snippet, canonical_url,
ts_rank(to_tsvector('english', coalesce(title,'')||' '||coalesce(snippet,'')), plainto_tsquery(%s)) AS rank
FROM articles
WHERE to_tsvector('english', coalesce(title,'')||' '||coalesce(snippet,'')) @@ plainto_tsquery(%s)
ORDER BY rank DESC
LIMIT 50
""", (q, q))
rows = cur.fetchall()
ids = [r[0] for r in rows] or [-1]
# 3) Vector rerank
cur.execute("""
SELECT a.id, a.title, a.snippet, a.canonical_url,
1 - (e.embedding <=> %s::vector) AS sim
FROM articles a
JOIN article_embeddings e ON e.article_id = a.id
WHERE a.id = ANY(%s)
ORDER BY sim DESC LIMIT %s
""", (np.array(v), ids, k))
return cur.fetchall()
```
### 7) Web UI (Next.js 14)
* App Router, Tailwind, shadcn/ui. Server actions call API.
* Components: `Composer`, `AnswerBox` (with sentence-level citations), `ResultCard`, `SourceChip`.
* Add **PWA** manifest + basic offline cache for shell.
### 8) Ingress (nginx primary, HAProxy optional)
```yaml
# deploy/overlays/pi-prod/ingress-nginx.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: news
namespace: news
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/proxy-body-size: "1m"
spec:
tls:
- hosts: [news.local]
secretName: news-tls
rules:
- host: news.local
http:
paths:
- path: /
pathType: Prefix
backend: { service: { name: web, port: { number: 80 } } }
- path: /v1
pathType: Prefix
backend: { service: { name: api, port: { number: 80 } } }
```
### 9) Observability
* **Logging**: JSON logs via `structlog` (API/workers), `stdout` aggregated by k0s.
* **Metrics**: Prometheus scraping (use `prometheus-fastapi-instrumentator`), Grafana dashboards.
* **Tracing**: OpenTelemetry SDK exporting to Tempo/OTLP (optional).
* SLOs: p95 search < 600ms (warm); ingest freshness p95 < 5 min.
### 10) CI/CD (GitHub Actions)
* Build multi-arch images with `setup-buildx-action`, push to your registry.
* Deploy via `kubectl` or ArgoCD (optional). Gate with manual approval.
### 11) Prompts & safety rails
* **Summary prompt**: 6090 words, neutral tone, forbid speculation, 12 citations with URLs.
* **Answer prompt**: Use only retrieved snippets; every sentence claims must cite `[n]`. If insufficient evidence, say so.
* **Guardrails**: Max 6 articles per answer; truncate inputs to token budget.
### 12) Performance knobs (Raspberry Pi friendly)
* Enable HTTP caching (ETag/IfModifiedSince).
* Redis cache TTL 10m for hot queries.
* Perhost concurrency: 2 (scraper); global QPS: 0.51 for Reuters.
* Use gzip/deflate when fetching; strip images when scraping.
### 13) Data retention
* Keep `articles` 30 days rolling (configurable). Older rows archived to `articles_archive` without embeddings.
### 14) Security
* NetworkPolicies: only API/worker → DB/Redis; web → API; deny egress by default except OpenAI domains.
* Secrets from Kubernetes; rotate quarterly. Readonly service accounts for web.
* TLS everywhere; CSP headers on web.
## Milestones
**MVP timeline: 2 weeks (LAN only, no TLS)**
### Week 1 — Foundations & ingest
* **Day 12**: Cluster prep (k0s), namespaces, nginx Ingress (HTTP only), metricsserver. Registry access + buildx pipeline.
* **Day 3**: Postgres (pgvector) + Redis live; migrations applied.
* **Day 4**: Workers scaffolded (poll, scrape) with Reuters RSS + sitemap pollers; ETag/LastModified implemented; robots policy set to *honor*.
* **Day 5**: Normalizer/dedupe; article schema writes; minimal admin page to view ingest logs.
**Exit criteria**: Reuters articles flowing into DB with title/snippet/category/published\_at; p95 freshness under 10 min.
### Week 2 — Search, summaries, UI polish
* **Day 6**: Embeddings worker + index (pgvector ivfflat). Hybrid search in API.
* **Day 7**: Summarizer worker; store 6090 word summaries; cache.
* **Day 8**: Next.js UI (composer, answer box, cards, source chips). Basic keyboard nav.
* **Day 9**: Observability: Prometheus scrape + Grafana dashboard; SLOs wired.
* **Day 10**: Hardening (quotas, retries), data retention job; smoke tests; cut **MVP v0.1.0**.
**Exit criteria**: Query returns an answer with citations in < 800ms warm path; summaries stable; LAN users can search and read cited sources.
## Gathering Results
### KPIs (Primary)
* **Freshness (p95)**: time from article publication → available in search. Target: ≤ 5 minutes; stretch ≤ 2 minutes.
* **Answer Accuracy**: % of answer sentences that have at least one valid citation to the retrieved set. Target: ≥ 95%.
### KPIs (Secondary)
* **Coverage**: % of Reuters articles discovered vs. listed in sitemaps over last 24h. Target: ≥ 98%.
* **Latency (p95)**: query → first contentful paint (UI) and API response time. Targets: API ≤ 600ms warm; UI FCP ≤ 1.5s on LAN.
* **Stability**: worker error rate < 1%; scraper retry rate < 10%.
### Instrumentation
* **Prometheus metrics**
* `ingest_freshness_seconds{source=…}` (histogram)
* `ingest_discovered_total{kind= rss|sitemap|scrape}`
* `scrape_http_status_total{code=…}`
* `search_latency_seconds` (histogram)
* `answer_citation_coverage_ratio` (gauge)
* `worker_queue_depth{queue=…}`
* **Structured logs** (JSON): include `trace_id`, `job_id`, and normalized URL.
* **Dashboards (Grafana)**: Freshness, Search Latency, Coverage vs Sitemap, Error budget burn.
### Accuracy evaluation
* **Automatic**:
* Parse answer into sentences; verify each sentence has at least one citation.
* Check that citation URLs match the topk retrieved set and that snippets contain supporting tokens (simple ROUGElike overlap).
* Flag lowevidence sentences for review.
* **Human review** (12×/week):
* 50 sampled answers; label: correct / partially supported / unsupported / offtopic.
* Compute **hallucination rate** (unsupported sentences ÷ total) and track trend.
### Feedback loop
* UI **thumbs up/down** with optional comment saved to `feedback` table:
```sql
CREATE TABLE feedback (
id BIGSERIAL PRIMARY KEY,
query TEXT NOT NULL,
answer_id TEXT,
verdict TEXT CHECK (verdict IN ('up','down')),
comment TEXT,
created_at TIMESTAMPTZ NOT NULL DEFAULT now()
);
```
* Downvotes autocreate a JIRA/GitHub issue if `answer_citation_coverage_ratio < 0.9`.
### Experimentation
* **Prompt variants** A/B via header flag in API (e.g., `x-prompt=v2`).
* **Ranking tweaks**: switch BM25 weight vs vector weight; record NDCG\@10 on labeled queries.
### Postmortems & safety
* Blameless postmortem for any incident where hallucination rate > 10% in a day or freshness p95 > 10 min for >1h.
* Daily data retention job verified; no fulltext persists beyond inmemory summary context.

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# Classy Perplexity-style News Aggregator
This repository houses the scaffolding for a Perplexity-inspired Reuters news aggregator designed for Raspberry Pi 5 clusters. See `INSTRUCTIONS.md` for the full specification and implementation guidelines.