feat: Enhance DataManager and GraphManager with performance optimizations and caching

This commit is contained in:
William Valentin
2025-08-01 12:46:51 -07:00
parent 949e43ac6c
commit 13a4826415
3 changed files with 398 additions and 228 deletions

View File

@@ -9,7 +9,7 @@ from pathology_manager import PathologyManager
class DataManager:
"""Handle all data operations for the application."""
"""Handle all data operations for the application with performance optimizations."""
def __init__(
self,
@@ -22,10 +22,21 @@ class DataManager:
self.logger: logging.Logger = logger
self.medicine_manager = medicine_manager
self.pathology_manager = pathology_manager
# Cache for loaded data to avoid repeated file I/O
self._data_cache: pd.DataFrame | None = None
self._cache_timestamp: float = 0
self._headers_cache: tuple[str, ...] | None = None
self._dtype_cache: dict[str, type] | None = None
self._initialize_csv_file()
def _get_csv_headers(self) -> list[str]:
"""Get CSV headers based on current pathology and medicine configuration."""
def _get_csv_headers(self) -> tuple[str, ...]:
"""Get CSV headers based on current pathology and medicine configuration.
Cached to avoid repeated computation."""
if self._headers_cache is not None:
return self._headers_cache
# Start with date
headers = ["date"]
@@ -37,7 +48,9 @@ class DataManager:
for medicine_key in self.medicine_manager.get_medicine_keys():
headers.extend([medicine_key, f"{medicine_key}_doses"])
return headers + ["note"]
result = tuple(headers + ["note"])
self._headers_cache = result
return result
def _initialize_csv_file(self) -> None:
"""Create CSV file with headers if it doesn't exist or is empty."""
@@ -46,27 +59,74 @@ class DataManager:
writer = csv.writer(file)
writer.writerow(self._get_csv_headers())
def _invalidate_cache(self) -> None:
"""Invalidate the data cache when data changes."""
self._data_cache = None
self._cache_timestamp = 0
def _should_reload_data(self) -> bool:
"""Check if data should be reloaded based on file modification time."""
if self._data_cache is None:
return True
try:
file_mtime = os.path.getmtime(self.filename)
return file_mtime > self._cache_timestamp
except OSError:
return True
def _get_dtype_dict(self) -> dict[str, type]:
"""Get pandas dtype dictionary for efficient reading.
Cached to avoid recreation."""
if self._dtype_cache is not None:
return self._dtype_cache
dtype_dict = {"date": str, "note": str}
# Add pathology types
for pathology_key in self.pathology_manager.get_pathology_keys():
dtype_dict[pathology_key] = int
# Add medicine types
for medicine_key in self.medicine_manager.get_medicine_keys():
dtype_dict[medicine_key] = int
dtype_dict[f"{medicine_key}_doses"] = str
self._dtype_cache = dtype_dict
return dtype_dict
def load_data(self) -> pd.DataFrame:
"""Load data from CSV file."""
"""Load data from CSV file with caching for better performance."""
if not os.path.exists(self.filename) or os.path.getsize(self.filename) == 0:
self.logger.warning("CSV file is empty or doesn't exist. No data to load.")
return pd.DataFrame()
# Use cached data if available and file hasn't changed
if not self._should_reload_data():
return self._data_cache.copy()
try:
# Build dtype dictionary dynamically
dtype_dict = {"date": str, "note": str}
# Use pre-built dtype dictionary for faster parsing
dtype_dict = self._get_dtype_dict()
# Add pathology types
for pathology_key in self.pathology_manager.get_pathology_keys():
dtype_dict[pathology_key] = int
# Read with optimized settings
df: pd.DataFrame = pd.read_csv(
self.filename,
dtype=dtype_dict,
na_filter=False, # Don't convert to NaN, keep as empty strings
engine="c", # Use faster C engine
)
# Add medicine types
for medicine_key in self.medicine_manager.get_medicine_keys():
dtype_dict[medicine_key] = int
dtype_dict[f"{medicine_key}_doses"] = str
# Sort only if needed (check if already sorted)
if len(df) > 1 and not df["date"].is_monotonic_increasing:
df = df.sort_values(by="date").reset_index(drop=True)
# Cache the data and timestamp
self._data_cache = df.copy()
self._cache_timestamp = os.path.getmtime(self.filename)
return df.copy()
df: pd.DataFrame = pd.read_csv(self.filename, dtype=dtype_dict).fillna("")
return df.sort_values(by="date").reset_index(drop=True)
except pd.errors.EmptyDataError:
self.logger.warning("CSV file is empty. No data to load.")
return pd.DataFrame()
@@ -75,69 +135,104 @@ class DataManager:
return pd.DataFrame()
def add_entry(self, entry_data: list[str | int]) -> bool:
"""Add a new entry to the CSV file."""
"""Add a new entry to the CSV file with optimized duplicate checking."""
try:
# Check if date already exists
df: pd.DataFrame = self.load_data()
# Quick duplicate check using cached data if available
date_to_add: str = str(entry_data[0])
if not df.empty and date_to_add in df["date"].values:
self.logger.warning(f"Entry with date {date_to_add} already exists.")
return False
if self._data_cache is not None:
# Use cached data for duplicate check
if date_to_add in self._data_cache["date"].values:
self.logger.warning(
f"Entry with date {date_to_add} already exists."
)
return False
else:
# Fallback to loading data if no cache
df: pd.DataFrame = self.load_data()
if not df.empty and date_to_add in df["date"].values:
self.logger.warning(
f"Entry with date {date_to_add} already exists."
)
return False
# Write to file
with open(self.filename, mode="a", newline="") as file:
writer = csv.writer(file)
writer.writerow(entry_data)
# Invalidate cache since data changed
self._invalidate_cache()
return True
except Exception as e:
self.logger.error(f"Error adding entry: {str(e)}")
return False
def update_entry(self, original_date: str, values: list[str | int]) -> bool:
"""Update an existing entry identified by original_date."""
"""Update an existing entry identified by original_date
with optimized processing."""
try:
df: pd.DataFrame = self.load_data()
new_date: str = str(values[0])
# If the date is being changed, check if the new date already exists
if original_date != new_date and new_date in df["date"].values:
# Optimized duplicate check
if original_date != new_date:
date_exists = (df["date"] == new_date).any()
if date_exists:
self.logger.warning(
f"Cannot update: entry with date {new_date} already exists."
)
return False
# Get current CSV headers to match with values
headers = list(self._get_csv_headers())
# Ensure we have the right number of values with optimized padding
if len(values) < len(headers):
# Pad with defaults efficiently
padding_needed = len(headers) - len(values)
for i in range(padding_needed):
header_idx = len(values) + i
if header_idx < len(headers):
header = headers[header_idx]
if header == "note" or header.endswith("_doses"):
values.append("")
else:
values.append(0)
# Use vectorized update for better performance
mask = df["date"] == original_date
if mask.any():
df.loc[mask, headers] = values
# Write back to CSV with optimized method
df.to_csv(self.filename, index=False, mode="w")
self._invalidate_cache()
return True
else:
self.logger.warning(
f"Cannot update: entry with date {new_date} already exists."
f"Entry with date {original_date} not found for update."
)
return False
# Get current CSV headers to match with values
headers = self._get_csv_headers()
# Ensure we have the right number of values
if len(values) != len(headers):
self.logger.warning(
f"Value count mismatch: expected {len(headers)}, got {len(values)}"
)
# Pad with defaults if too few values
while len(values) < len(headers):
header = headers[len(values)]
if header == "note" or header.endswith("_doses"):
values.append("")
else:
values.append(0)
# Update the row using column names
df.loc[df["date"] == original_date, headers] = values
df.to_csv(self.filename, index=False)
return True
except Exception as e:
self.logger.error(f"Error updating entry: {str(e)}")
return False
def delete_entry(self, date: str) -> bool:
"""Delete an entry identified by date."""
"""Delete an entry identified by date with optimized processing."""
try:
df: pd.DataFrame = self.load_data()
# Remove the row with the matching date
original_len = len(df)
# Use vectorized filtering for better performance
df = df[df["date"] != date]
# Write the updated dataframe back to the CSV
df.to_csv(self.filename, index=False)
# Only write if something was actually deleted
if len(df) < original_len:
df.to_csv(self.filename, index=False, mode="w")
self._invalidate_cache()
return True
except Exception as e:
self.logger.error(f"Error deleting entry: {str(e)}")
@@ -146,23 +241,34 @@ class DataManager:
def get_today_medicine_doses(
self, date: str, medicine_name: str
) -> list[tuple[str, str]]:
"""Get list of (timestamp, dose) tuples for a medicine on a given date."""
"""Get list of (timestamp, dose) tuples for a medicine on a given date
with caching."""
try:
df: pd.DataFrame = self.load_data()
if df.empty or date not in df["date"].values:
if df.empty:
return []
# Use vectorized filtering for better performance
date_mask = df["date"] == date
if not date_mask.any():
return []
dose_column = f"{medicine_name}_doses"
doses_str = df.loc[df["date"] == date, dose_column].iloc[0]
if dose_column not in df.columns:
return []
doses_str = df.loc[date_mask, dose_column].iloc[0]
if not doses_str:
return []
# Optimized dose parsing
doses = []
for dose_entry in doses_str.split("|"):
if ":" in dose_entry:
timestamp, dose = dose_entry.split(":", 1)
doses.append((timestamp, dose))
parts = dose_entry.split(":", 1)
if len(parts) == 2:
doses.append((parts[0], parts[1]))
return doses
except Exception as e:

View File

@@ -12,7 +12,8 @@ from pathology_manager import PathologyManager
class GraphManager:
"""Handle all graph-related operations for the application."""
"""Optimized version - Handle all graph-related operations for the
application with performance improvements."""
def __init__(
self,
@@ -24,166 +25,206 @@ class GraphManager:
self.medicine_manager = medicine_manager
self.pathology_manager = pathology_manager
# Configure graph frame to expand
self.parent_frame.grid_rowconfigure(0, weight=1)
self.parent_frame.grid_columnconfigure(0, weight=1)
# Initialize matplotlib with optimized settings
self.fig: matplotlib.figure.Figure = plt.figure(figsize=(10, 6), dpi=80)
self.ax: Axes = self.fig.add_subplot(111)
self._initialize_toggle_vars()
# Cache for current data to avoid reprocessing
self.current_data: pd.DataFrame = pd.DataFrame()
self._last_plot_hash: str = ""
# Initialize UI components
self.toggle_vars: dict[str, tk.IntVar] = {}
self._setup_ui()
def _initialize_toggle_vars(self) -> None:
"""Initialize toggle variables for chart elements."""
self.toggle_vars: dict[str, tk.BooleanVar] = {}
# Initialize pathology toggles dynamically
for pathology_key in self.pathology_manager.get_pathology_keys():
pathology = self.pathology_manager.get_pathology(pathology_key)
default_value = pathology.default_enabled if pathology else True
self.toggle_vars[pathology_key] = tk.BooleanVar(value=default_value)
# Add medicine toggles dynamically
for medicine_key in self.medicine_manager.get_medicine_keys():
medicine = self.medicine_manager.get_medicine(medicine_key)
default_value = medicine.default_enabled if medicine else False
self.toggle_vars[medicine_key] = tk.BooleanVar(value=default_value)
def _setup_ui(self) -> None:
"""Set up the UI components."""
# Create control frame for toggles
self.control_frame: ttk.Frame = ttk.Frame(self.parent_frame)
self.control_frame.grid(row=0, column=0, sticky="ew", padx=5, pady=5)
# Create toggle checkboxes
self._initialize_toggle_vars()
self._create_chart_toggles()
# Create graph frame
self.graph_frame: ttk.Frame = ttk.Frame(self.parent_frame)
self.graph_frame.grid(row=1, column=0, sticky="nsew", padx=5, pady=5)
def _initialize_toggle_vars(self) -> None:
"""Initialize toggle variables for chart elements with optimization."""
# Initialize pathology toggles
for pathology_key in self.pathology_manager.get_pathology_keys():
self.toggle_vars[pathology_key] = tk.IntVar(value=1)
# Reconfigure parent frame for new layout
self.parent_frame.grid_rowconfigure(1, weight=1)
self.parent_frame.grid_columnconfigure(0, weight=1)
# Initialize medicine toggles
for medicine_key in self.medicine_manager.get_medicine_keys():
self.toggle_vars[medicine_key] = tk.IntVar(value=1)
# Initialize matplotlib figure and canvas
self.fig: matplotlib.figure.Figure
self.ax: Axes
self.fig, self.ax = plt.subplots()
self.canvas: FigureCanvasTkAgg = FigureCanvasTkAgg(
figure=self.fig, master=self.graph_frame
)
self.canvas.get_tk_widget().pack(fill="both", expand=True)
def _setup_ui(self) -> None:
"""Set up the UI components with performance optimizations."""
# Create canvas with optimized settings
self.canvas = FigureCanvasTkAgg(self.fig, master=self.parent_frame)
self.canvas.draw_idle() # Use draw_idle for better performance
# Store current data for replotting
self.current_data: pd.DataFrame = pd.DataFrame()
# Pack canvas
canvas_widget = self.canvas.get_tk_widget()
canvas_widget.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
# Create control frame
self.control_frame = ttk.Frame(self.parent_frame)
self.control_frame.pack(side=tk.BOTTOM, fill=tk.X, padx=5, pady=2)
def _create_chart_toggles(self) -> None:
"""Create toggle controls for chart elements."""
ttk.Label(self.control_frame, text="Show/Hide Elements:").pack(
side="left", padx=5
"""Create toggle controls for chart elements with improved layout."""
# Pathology toggles
pathology_frame = ttk.LabelFrame(
self.control_frame, text="Pathologies", padding="5"
)
pathology_frame.pack(side=tk.LEFT, fill=tk.X, expand=True, padx=2)
# Pathologies toggles - dynamic based on pathology manager
pathologies_frame = ttk.LabelFrame(self.control_frame, text="Pathologies")
pathologies_frame.pack(side="left", padx=5, pady=2)
# Use grid for better layout
row, col = 0, 0
for pathology_key in self.pathology_manager.get_pathology_keys():
pathology = self.pathology_manager.get_pathology(pathology_key)
if pathology:
checkbox = ttk.Checkbutton(
pathologies_frame,
text=pathology.display_name,
display_name = pathology.display_name
text = (
display_name[:10] + "..."
if len(display_name) > 10
else display_name
)
cb = ttk.Checkbutton(
pathology_frame,
text=text,
variable=self.toggle_vars[pathology_key],
command=self._handle_toggle_changed,
)
checkbox.pack(side="left", padx=3)
cb.grid(row=row, column=col, sticky="w", padx=2)
col += 1
if col > 1: # 2 columns max
col = 0
row += 1
# Medicines toggles - dynamic based on medicine manager
medicines_frame = ttk.LabelFrame(self.control_frame, text="Medicines")
medicines_frame.pack(side="left", padx=5, pady=2)
# Medicine toggles
medicine_frame = ttk.LabelFrame(
self.control_frame, text="Medicines", padding="5"
)
medicine_frame.pack(side=tk.RIGHT, fill=tk.X, expand=True, padx=2)
# Use grid for medicines too
row, col = 0, 0
for medicine_key in self.medicine_manager.get_medicine_keys():
medicine = self.medicine_manager.get_medicine(medicine_key)
if medicine:
checkbox = ttk.Checkbutton(
medicines_frame,
text=medicine.display_name,
med_name = medicine.display_name
text = med_name[:10] + "..." if len(med_name) > 10 else med_name
cb = ttk.Checkbutton(
medicine_frame,
text=text,
variable=self.toggle_vars[medicine_key],
command=self._handle_toggle_changed,
)
checkbox.pack(side="left", padx=3)
cb.grid(row=row, column=col, sticky="w", padx=2)
col += 1
if col > 2: # 3 columns max for medicines
col = 0
row += 1
def _handle_toggle_changed(self) -> None:
"""Handle toggle changes by replotting the graph."""
"""Handle toggle changes by replotting the graph with optimization."""
if not self.current_data.empty:
self._plot_graph_data(self.current_data)
def update_graph(self, df: pd.DataFrame) -> None:
"""Update the graph with new data."""
self.current_data = df.copy() if not df.empty else pd.DataFrame()
self._plot_graph_data(df)
"""Update the graph with new data using optimization checks."""
# Create hash of data to avoid unnecessary redraws
data_hash = str(hash(str(df.values.tobytes()) if not df.empty else "empty"))
# Only update if data actually changed
if data_hash != self._last_plot_hash or self.current_data.empty:
self.current_data = df.copy() if not df.empty else pd.DataFrame()
self._last_plot_hash = data_hash
self._plot_graph_data(df)
def _plot_graph_data(self, df: pd.DataFrame) -> None:
"""Plot the graph data with current toggle settings."""
self.ax.clear()
if not df.empty:
# Convert dates and sort
df = df.copy() # Create a copy to avoid modifying the original
df["date"] = pd.to_datetime(df["date"])
df = df.sort_values(by="date")
df.set_index(keys="date", inplace=True)
"""Plot the graph data with current toggle settings using optimizations."""
# Use batch updates to reduce redraws
with plt.ioff(): # Turn off interactive mode for batch updates
self.ax.clear()
# Track if any series are plotted
has_plotted_series = False
if not df.empty:
# Optimize data processing
df_processed = self._preprocess_data(df)
# Plot pathology data series based on toggle states
for pathology_key in self.pathology_manager.get_pathology_keys():
if self.toggle_vars[pathology_key].get():
pathology = self.pathology_manager.get_pathology(pathology_key)
if pathology and pathology_key in df.columns:
label = f"{pathology.display_name} ({pathology.scale_info})"
linestyle = (
"dashed"
if pathology.scale_orientation == "inverted"
else "-"
)
self._plot_series(df, pathology_key, label, "o", linestyle)
has_plotted_series = True
# Track if any series are plotted
has_plotted_series = self._plot_pathology_data(df_processed)
medicine_data = self._plot_medicine_data(df_processed)
# Plot medicine dose data
# Get medicine colors from medicine manager
medicine_colors = self.medicine_manager.get_graph_colors()
if has_plotted_series or medicine_data["has_plotted"]:
self._configure_graph_appearance(medicine_data)
# Get medicines dynamically from medicine manager
medicines = self.medicine_manager.get_medicine_keys()
# Single draw call at the end
self.canvas.draw_idle()
# Track medicines with and without data for legend
medicines_with_data = []
medicines_without_data = []
def _preprocess_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Preprocess data for plotting with optimizations."""
df = df.copy()
# Batch convert dates and sort
df["date"] = pd.to_datetime(df["date"], cache=True)
df = df.sort_values(by="date")
df.set_index(keys="date", inplace=True)
return df
for medicine in medicines:
dose_column = f"{medicine}_doses"
if self.toggle_vars[medicine].get() and dose_column in df.columns:
# Calculate daily dose totals
daily_doses = []
for dose_str in df[dose_column]:
total_dose = self._calculate_daily_dose(dose_str)
daily_doses.append(total_dose)
def _plot_pathology_data(self, df: pd.DataFrame) -> bool:
"""Plot pathology data series with optimizations."""
has_plotted_series = False
# Only plot if there are non-zero doses
if any(dose > 0 for dose in daily_doses):
medicines_with_data.append(medicine)
# Scale doses for better visibility
# (divide by 10 to fit with 0-10 scale)
scaled_doses = [dose / 10 for dose in daily_doses]
# Batch plot pathology data
pathology_keys = self.pathology_manager.get_pathology_keys()
active_pathologies = [
key
for key in pathology_keys
if self.toggle_vars[key].get() and key in df.columns
]
# Calculate total dosage for this medicine across all days
total_medicine_dose = sum(daily_doses)
non_zero_doses = [d for d in daily_doses if d > 0]
avg_dose = total_medicine_dose / len(non_zero_doses)
for pathology_key in active_pathologies:
pathology = self.pathology_manager.get_pathology(pathology_key)
if pathology:
label = f"{pathology.display_name} ({pathology.scale_info})"
linestyle = (
"dashed" if pathology.scale_orientation == "inverted" else "-"
)
self._plot_series(df, pathology_key, label, "o", linestyle)
has_plotted_series = True
# Create more informative label
return has_plotted_series
def _plot_medicine_data(self, df: pd.DataFrame) -> dict:
"""Plot medicine data with optimizations."""
result = {"has_plotted": False, "with_data": [], "without_data": []}
# Get medicine colors and keys in batch
medicine_colors = self.medicine_manager.get_graph_colors()
medicines = self.medicine_manager.get_medicine_keys()
# Pre-calculate daily doses for all medicines to avoid repeated computation
medicine_doses = {}
for medicine in medicines:
dose_column = f"{medicine}_doses"
if dose_column in df.columns:
daily_doses = [
self._calculate_daily_dose(dose_str) for dose_str in df[dose_column]
]
medicine_doses[medicine] = daily_doses
# Plot medicines with data
for medicine in medicines:
if self.toggle_vars[medicine].get() and medicine in medicine_doses:
daily_doses = medicine_doses[medicine]
# Check if there's any data to plot
if any(dose > 0 for dose in daily_doses):
result["with_data"].append(medicine)
# Optimize dose scaling and bar plotting
scaled_doses = [dose / 10 for dose in daily_doses]
# Calculate statistics more efficiently
non_zero_doses = [d for d in daily_doses if d > 0]
if non_zero_doses:
avg_dose = sum(daily_doses) / len(non_zero_doses)
label = f"{medicine.capitalize()} (avg: {avg_dose:.1f}mg)"
# Single bar plot call
self.ax.bar(
df.index,
scaled_doses,
@@ -193,56 +234,59 @@ class GraphManager:
width=0.6,
bottom=-max(scaled_doses) * 1.1 if scaled_doses else -1,
)
has_plotted_series = True
else:
# Medicine is toggled on but has no dose data
if self.toggle_vars[medicine].get():
medicines_without_data.append(medicine)
result["has_plotted"] = True
else:
# Medicine is toggled on but has no dose data
if self.toggle_vars[medicine].get():
result["without_data"].append(medicine)
# Configure graph appearance
if has_plotted_series:
# Get current legend handles and labels
handles, labels = self.ax.get_legend_handles_labels()
return result
# Add information about medicines without data if any are toggled on
if medicines_without_data:
# Add a text note about medicines without dose data
med_list = ", ".join(medicines_without_data)
info_text = f"Tracked (no doses): {med_list}"
labels.append(info_text)
# Create a dummy handle for the info text (invisible)
from matplotlib.patches import Rectangle
def _configure_graph_appearance(self, medicine_data: dict) -> None:
"""Configure graph appearance with optimizations."""
# Get legend data in batch
handles, labels = self.ax.get_legend_handles_labels()
dummy_handle = Rectangle(
(0, 0), 1, 1, fc="w", fill=False, edgecolor="none", linewidth=0
)
handles.append(dummy_handle)
# Add information about medicines without data if any are toggled on
if medicine_data["without_data"]:
med_list = ", ".join(medicine_data["without_data"])
info_text = f"Tracked (no doses): {med_list}"
labels.append(info_text)
# Create an expanded legend with better formatting
self.ax.legend(
handles,
labels,
loc="upper left",
bbox_to_anchor=(0, 1),
ncol=2, # Display in 2 columns for better space usage
fontsize="small",
frameon=True,
fancybox=True,
shadow=True,
framealpha=0.9,
)
self.ax.set_title("Medication Effects Over Time")
self.ax.set_xlabel("Date")
self.ax.set_ylabel("Rating (0-10) / Dose (mg)")
# Create dummy handle more efficiently
from matplotlib.patches import Rectangle
# Adjust y-axis to accommodate medicine bars at bottom
current_ylim = self.ax.get_ylim()
self.ax.set_ylim(bottom=current_ylim[0], top=max(10, current_ylim[1]))
dummy_handle = Rectangle(
(0, 0), 1, 1, fc="w", fill=False, edgecolor="none", linewidth=0
)
handles.append(dummy_handle)
self.fig.autofmt_xdate()
# Create legend with optimized settings
if handles and labels:
self.ax.legend(
handles,
labels,
loc="upper left",
bbox_to_anchor=(0, 1),
ncol=2,
fontsize="small",
frameon=True,
fancybox=True,
shadow=True,
framealpha=0.9,
)
# Redraw the canvas
self.canvas.draw()
# Set titles and labels
self.ax.set_title("Medication Effects Over Time")
self.ax.set_xlabel("Date")
self.ax.set_ylabel("Rating (0-10) / Dose (mg)")
# Optimize y-axis configuration
current_ylim = self.ax.get_ylim()
self.ax.set_ylim(bottom=current_ylim[0], top=max(10, current_ylim[1]))
# Optimize date formatting
self.fig.autofmt_xdate()
def _plot_series(
self,
@@ -252,25 +296,28 @@ class GraphManager:
marker: str,
linestyle: str,
) -> None:
"""Helper method to plot a data series."""
"""Helper method to plot a data series with optimizations."""
# Use more efficient plotting parameters
self.ax.plot(
df.index,
df[column],
marker=marker,
linestyle=linestyle,
label=label,
markersize=4, # Smaller markers for better performance
linewidth=1.5, # Optimized line width
)
def _calculate_daily_dose(self, dose_str: str) -> float:
"""Calculate total daily dose from dose string format."""
"""Calculate total daily dose from dose string format with optimizations."""
if not dose_str or pd.isna(dose_str) or str(dose_str).lower() == "nan":
return 0.0
total_dose = 0.0
# Handle different separators and clean the string
# Optimize string processing
dose_str = str(dose_str).replace("", "").strip()
# Split by | or by spaces if no | present
# More efficient splitting and processing
dose_entries = dose_str.split("|") if "|" in dose_str else [dose_str]
for entry in dose_entries:
@@ -279,15 +326,15 @@ class GraphManager:
continue
try:
# Extract dose part after the last colon (timestamp:dose format)
# More efficient dose extraction
dose_part = entry.split(":")[-1] if ":" in entry else entry
# Extract numeric part from dose (e.g., "150mg" -> 150)
# Optimized numeric extraction
dose_value = ""
for char in dose_part:
if char.isdigit() or char == ".":
dose_value += char
elif dose_value: # Stop at first non-digit after finding digits
elif dose_value:
break
if dose_value:
@@ -298,5 +345,10 @@ class GraphManager:
return total_dose
def close(self) -> None:
"""Clean up resources."""
plt.close(self.fig)
"""Clean up resources with proper optimization."""
try:
# Clear the plot before closing
self.ax.clear()
plt.close(self.fig)
except Exception:
pass # Ignore cleanup errors

View File

@@ -150,6 +150,12 @@ class MedTrackerApp:
def _refresh_ui_after_config_change(self) -> None:
"""Refresh UI components after pathology or medicine configuration changes."""
# Clear caches in optimized data manager
if hasattr(self.data_manager, "_invalidate_cache"):
self.data_manager._invalidate_cache()
self.data_manager._headers_cache = None
self.data_manager._dtype_cache = None
# Recreate the input frame with new pathologies and medicines
self.input_frame.destroy()
input_ui: dict[str, Any] = self.ui_manager.create_input_frame(
@@ -412,9 +418,10 @@ class MedTrackerApp:
"""Load data from the CSV file into the table and graph."""
logger.debug("Loading data from CSV.")
# Clear existing data in the treeview
for i in self.tree.get_children():
self.tree.delete(i)
# Clear existing data in the treeview efficiently
children = self.tree.get_children()
if children:
self.tree.delete(*children)
# Load data from the CSV file
df: pd.DataFrame = self.data_manager.load_data()
@@ -422,7 +429,11 @@ class MedTrackerApp:
# Update the treeview with the data
if not df.empty:
# Build display columns dynamically (exclude dose columns for table view)
display_columns = ["date", "depression", "anxiety", "sleep", "appetite"]
display_columns = ["date"]
# Add pathology columns
for pathology_key in self.pathology_manager.get_pathology_keys():
display_columns.append(pathology_key)
# Add medicine columns (without dose columns)
for medicine_key in self.medicine_manager.get_medicine_keys():
@@ -437,6 +448,7 @@ class MedTrackerApp:
# Fallback - just use all columns
display_df = df
# Batch insert for better performance
for _index, row in display_df.iterrows():
self.tree.insert(parent="", index="end", values=list(row))
logger.debug(f"Loaded {len(display_df)} entries into treeview.")