Files
thechart/LEGEND_TEST_UPDATES.md
William Valentin b76191d66d
Some checks failed
Build and Push Docker Image / build-and-push (push) Has been cancelled
feat: Implement dose calculation fix and enhance legend feature
- Fixed dose calculation logic in `_calculate_daily_dose` to correctly parse timestamps with multiple colons.
- Added comprehensive test cases for various dose formats and edge cases in `test_dose_calculation.py`.
- Enhanced graph legend to display individual medicines with average dosages and track medicines without dose data.
- Updated legend styling and positioning for better readability and organization.
- Created new tests for enhanced legend functionality, including handling of medicines with and without data.
- Improved mocking for matplotlib components in tests to prevent TypeErrors.
2025-07-30 14:22:07 -07:00

177 lines
6.2 KiB
Markdown

# Test Updates for Enhanced Legend Feature
## Overview
Updated test suite to cover the new enhanced legend functionality that displays individual medicines with average dosages and tracks medicines without dose data.
## New Test Methods Added
### 1. `test_enhanced_legend_functionality`
**Purpose**: Tests that the enhanced legend displays correctly with medicine dose data.
**What it tests**:
- Legend is called with enhanced formatting parameters (ncol=2, fontsize='small', etc.)
- Medicine toggles are properly handled
- Legend configuration parameters are correctly applied
**Key assertions**:
- `mock_ax.legend.assert_called()`
- Verifies `ncol=2`, `fontsize='small'`, `frameon=True` parameters
### 2. `test_legend_with_medicines_without_data`
**Purpose**: Tests that medicines without dose data are properly tracked and displayed in legend info.
**What it tests**:
- Medicines with dose data vs. medicines without dose data
- Additional legend entries for "Tracked (no doses)" information
- Proper handling of mixed data scenarios
**Key assertions**:
- Legend has more labels than original when medicines without data are present
- `mock_ax.legend.assert_called()`
### 3. `test_average_dose_calculation_in_legend`
**Purpose**: Tests that average doses are correctly calculated and used in legend labels.
**What it tests**:
- Dose calculation accuracy for varying dose amounts
- Average calculation logic for medicines with multiple daily entries
- Proper dose processing and bar plotting
**Key assertions**:
- Direct dose calculation verification: `assert bup_avg == 100.0`
- Bar plotting verification: `mock_ax.bar.assert_called()`
### 4. `test_legend_positioning_and_styling`
**Purpose**: Tests that all legend styling parameters are correctly applied.
**What it tests**:
- Complete set of legend parameters (loc, bbox_to_anchor, ncol, fontsize, frameon, fancybox, shadow, framealpha)
- Parameter value accuracy
- Consistent application of styling
**Key assertions**:
```python
expected_params = {
'loc': 'upper left',
'bbox_to_anchor': (0, 1),
'ncol': 2,
'fontsize': 'small',
'frameon': True,
'fancybox': True,
'shadow': True,
'framealpha': 0.9
}
```
### 5. `test_medicine_tracking_lists`
**Purpose**: Tests that medicines are correctly categorized into medicines_with_data and medicines_without_data lists.
**What it tests**:
- Proper categorization of medicines based on dose data availability
- Toggle state handling for different medicine states
- Mixed scenarios with some medicines having data and others not
**Key assertions**:
- `mock_ax.bar.assert_called()` for medicines with data
- `mock_ax.legend.assert_called()` for legend creation
### 6. `test_legend_dummy_handle_creation`
**Purpose**: Tests that dummy handles are created for medicines without dose data in legend.
**What it tests**:
- Rectangle dummy handle creation for text-only legend entries
- Proper import and usage of matplotlib.patches.Rectangle
- Integration of dummy handles with existing legend system
**Key assertions**:
- `mock_rectangle.assert_called()` when medicines without data are present
### 7. `test_empty_dataframe_legend_handling`
**Purpose**: Tests that legend is handled correctly with empty DataFrame scenarios.
**What it tests**:
- No legend creation when no data is present
- Proper graph clearing and canvas redrawing
- Edge case handling
**Key assertions**:
- `mock_ax.legend.assert_not_called()` for empty data
- `mock_ax.clear.assert_called()` and `mock_canvas.draw.assert_called()`
## Test Data Enhancements
### Enhanced Sample DataFrames
Tests now use more comprehensive DataFrames that include:
- **Realistic dose data**: Multiple dose entries with varying amounts
- **Mixed scenarios**: Some medicines with data, others without
- **Average calculation data**: Varying doses across multiple days for accurate average testing
- **Edge cases**: Empty dose strings, missing data scenarios
### Example Test Data Structure:
```python
df_with_varying_doses = pd.DataFrame({
'bupropion_doses': ['100mg', '200mg', '150mg'], # Avg: 150mg
'propranolol_doses': ['10mg', '20mg', ''], # Avg: 15mg
'hydroxyzine_doses': ['', '', ''], # No data
})
```
## Mock Enhancements
### Legend-Specific Mocks:
- **`mock_ax.get_legend_handles_labels`**: Returns mock handles and labels
- **`matplotlib.patches.Rectangle`**: Mocked for dummy handle creation
- **Enhanced legend parameter verification**: Detailed parameter checking
### Integration Testing:
- Tests work with existing matplotlib mocking structure
- Compatible with existing GraphManager test patterns
- Maintains isolation between test methods
## Coverage Areas
### Legend Functionality:
**Enhanced formatting**: Multi-column, styling, positioning
**Medicine tracking**: With/without data categorization
**Average calculations**: Accurate dose averaging in labels
**Dummy handles**: Text-only legend entries
**Parameter validation**: All styling parameters verified
### Edge Cases:
**Empty DataFrames**: No legend creation
**Mixed data scenarios**: Some medicines with/without data
**Toggle combinations**: Various medicine toggle states
**Import handling**: Matplotlib patches import testing
### Integration:
**Existing functionality**: Compatible with previous tests
**Mock consistency**: Uses established mocking patterns
**Error handling**: Graceful handling of edge cases
## Running the Tests
```bash
# Run all graph manager tests
.venv/bin/python -m pytest tests/test_graph_manager.py -v
# Run only legend-related tests
.venv/bin/python -m pytest tests/test_graph_manager.py -k "legend" -v
# Run with coverage
.venv/bin/python -m pytest tests/test_graph_manager.py --cov=src.graph_manager --cov-report=html
```
## Benefits
### Test Quality:
- **Comprehensive coverage** of new legend functionality
- **Edge case testing** for robust error handling
- **Integration testing** with existing graph functionality
### Maintenance:
- **Clear test names** indicating specific functionality
- **Isolated test methods** for easy debugging
- **Consistent patterns** following existing test structure
The updated tests ensure that the enhanced legend functionality is thoroughly validated while maintaining compatibility with existing GraphManager features.